4,824 research outputs found

    The physiological expression of inducible nitric oxide synthase (iNOS) in the human colon

    Get PDF
    Inducible nitric oxide synthase (iNOS) is expressed in the colonic epithelium in both inflammatory bowel disease and colorectal cancer. Nitric oxide (NO), the product of this enzyme, has been implicated in the pathogenesis of both conditions. However, there are conflicting data on whether iNOS is expressed in the normal, uninflamed human colon. To evaluate the expression of iNOS in histologically normal, non-inflamed human colonic mucosa. Reverse transcription polymerase chain reaction (RT-PCR), immunoblotting, and immunohistochemistry were used to investigate the expression of iNOS in 17 histologically normal specimens obtained at colectomy performed for colorectal neoplasia. In addition, 16 endoscopic mucosal biopsies, taken from normal individuals, were also evaluated. Eleven surgical specimens and 16 endoscopic biopsies from patients with refractory ulcerative colitis were used as inflammatory controls. All types of specimens expressed iNOS mRNA. Immunoblotting revealed a protein of approximately 130 kDa consistent with iNOS in mucosal extracts of 77% of normal individuals, and 85% of diseased controls. Immunolabelling localised this protein to the surface epithelium in most of the normal specimens and also to the crypt epithelium and inflammatory cells in the diseased controls. These findings provide evidence that iNOS is often expressed in the surface epithelium of non-inflamed human colon, suggesting that it is induced by local luminal factors, such as bacterial lipopolysaccharide (endotoxin). The resultant NO produced at this site might act as an oxidative barrier, reducing bacterial translocation and providing a means of defence against pathogenic microorganisms

    Crystal structure of geranylgeranyl pyrophosphate synthase (CrtE) involved in cyanobacterial terpenoid biosynthesis

    Get PDF
    Cyanobacteria are photosynthetic prokaryotes that perform oxygenic photosynthesis. Due to their ability to use the photon energy of sunlight to fix carbon dioxide into biomass, cyanobacteria are promising hosts for the sustainable production of terpenoids, also known as isoprenoids, a diverse class of natural products with potential as advanced biofuels and high-value chemicals. However, the cyanobacterial enzymes involved in the biosynthesis of the terpene precursors needed to make more complicated terpenoids are poorly characterized. Here we show that the predicted type II prenyltransferase CrtE encoded by the model cyanobacterium Synechococcus sp. PCC 7002 is homodimeric and able to synthesize C20-geranylgeranyl pyrophosphate (GGPP) from C5-isopentenyl pyrophosphate (IPP) and C5-dimethylallyl pyrophosphate (DMAPP). The crystal structure of CrtE solved to a resolution of 2.7 Å revealed a strong structural similarity to the large subunit of the heterodimeric geranylgeranyl pyrophosphate synthase 1 from Arabidopsis thaliana with each subunit containing 14 helices. Using mutagenesis, we confirmed that the fourth and fifth amino acids (Met-87 and Ser-88) before the first conserved aspartate-rich motif (FARM) play important roles in controlling chain elongation. While the WT enzyme specifically produced GGPP, variants M87F and S88Y could only generate C15-farnesyl pyrophosphate (FPP), indicating that residues with large side chains obstruct product elongation. In contrast, replacement of M87 with the smaller Ala residue allowed the formation of the longer C25-geranylfarnesyl pyrophosphate (GFPP) product. Overall, our results provide new structural and functional information on the cyanobacterial CrtE enzyme that could lead to the development of improved cyanobacterial platforms for terpenoid production

    Tracing coco de mer's reproductive history: Pollen and nutrient limitations reduce fecundity

    Get PDF
    This is the final version of the article. Available from Wiley Open Access via the DOI in this record.Habitat degradation can reduce or even prevent the reproduction of previously abundant plant species. To develop appropriate management strategies, we need to understand the reasons for reduced recruitment in degraded ecosystems. The dioecious coco de mer palm (Lodoicea maldivica) produces by far the largest seeds of any plant. It is a keystone species in an ancient palm forest that occurs only on two small islands in the Seychelles, yet contemporary rates of seed production are low, especially in fragmented populations. We developed a method to infer the recent reproductive history of female trees from morphological evidence present on their inflorescences. We then applied this method to investigate the effects of habitat disturbance and soil nutrient conditions on flower and fruit production. The 57 female trees in our sample showed a 19.5-fold variation in flower production among individuals over a seven-year period. Only 77.2% of trees bore developing fruits (or had recently shed fruits), with the number per tree ranging from zero to 43. Flower production was positively correlated with concentrations of available soil nitrogen and potassium and did not differ significantly between closed and degraded habitat. Fruiting success was positively correlated with pollen availability, as measured by numbers and distance of neighboring male trees. Fruit set was lower in degraded habitat than in closed forest, while the proportion of abnormal fruits that failed to develop was higher in degraded habitat. Seed size recorded for a large sample of seeds collected by forest wardens varied widely, with fresh weights ranging from 1 to 18 kg. Synthesis: Shortages of both nutrients and pollen appear to limit seed production of Lodoicea in its natural habitat, with these factors affecting different stages of the reproductive process. Flower production varies widely amongst trees, while seed production is especially low in degraded habitat. The size of seeds is also very variable. We discuss the implications of these findings for managing this ecologically and economically important species.Deutsche Forschungsgemeinschaft. Grant Number: KA 3349/2‐1. Eidgenössische Technische Hochschule Zürich. Grant Number: ETH‐37 12‐

    Evaluating the feasibility of a web-based weight loss programme for naval service personnel with excess body weight.

    Get PDF
    Overweight and obesity are a major concern that may influence the operational capacity of the UK Naval Service (NS). This study was conducted to evaluate the feasibility of trialling and implementing a modified web-based weight loss programme for overweight and obese NS personnel.Royal Navy; University of Southampto

    Deletion of the Polycomb-Group Protein EZH2 Leads to Compromised Self-Renewal and Differentiation Defects in Human Embryonic Stem Cells

    Get PDF
    Through the histone methyltransferase EZH2, the Polycomb complex PRC2 mediates H3K27me3 and is associated with transcriptional repression. PRC2 regulates cell-fate decisions in model organisms; however, its role in regulating cell differentiation during human embryogenesis is unknown. Here, we report the characterization of EZH2\small \textit{EZH2}-deficient human embryonic stem cells (hESCs). H3K27me3 was lost upon EZH2\small \textit{EZH2} deletion, identifying an essential requirement for EZH2 in methylating H3K27 in hESCs, in contrast to its non-essential role in mouse ESCs. Developmental regulators were derepressed in EZH2\small \textit{EZH2}-deficient hESCs, and single-cell analysis revealed an unexpected acquisition of lineage-restricted transcriptional programs. EZH2\small \textit{EZH2}-deficient hESCs show strongly reduced self-renewal and proliferation, thereby identifying a more severe phenotype compared to mouse ESCs. EZH2\small \textit{EZH2}-deficient hESCs can initiate differentiation toward developmental lineages; however, they cannot fully differentiate into mature specialized tissues. Thus, EZH2\small \textit{EZH2} is required for stable ESC self-renewal, regulation of transcriptional programs, and for late-stage differentiation in this model of early human development.Wellcome Trust (Grant ID: WT093736), Biotechnology and Biological Sciences Research Council (Grant ID: BBS/E/B/000C0402), Medical Research Council (DTG Studentships, Grant ID: MR/J003808/1

    Seabird diving behaviour reveals the functional significance of shelf-sea fronts as foraging hotspots

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.Oceanic fronts are key habitats for a diverse range of marine predators, yet how they influence fine-scale foraging behaviour is poorly understood. Here, we investigated the dive behaviour of northern gannets Morus bassanus in relation to shelf-sea fronts. We GPS tracked 53 breeding birds and examined the relationship between 1901 foraging dives (from time-depth recorders) and thermal fronts (identified via Earth Observation composite front mapping) in the Celtic Sea, North-East Atlantic. We (1) used a habitat use-availability analysis to determine whether gannets preferentially dived at fronts, and (2) compared dive characteristics in relation to fronts to investigate the functional significance of these oceanographic features. We found that relationships between gannet dive probabilities and fronts varied by frontal metric and sex. Whilst both sexes were more likely to dive in the presence of seasonally persistent fronts, links to more ephemeral features were less clear. Here, males were positively correlated with distance to front and cross-front gradient strength, with the reverse for females. Both sexes performed two dive strategies: shallow V-shaped plunge dives with little or no active swim phase (92% of dives), and deeper U-shaped dives with an active pursuit phase of at least three seconds (8% of dives). When foraging around fronts, gannets were half as likely to engage in U-shaped dives compared with V-shaped dives, independent of sex. Moreover, V-shaped dive durations were significantly shortened around fronts. These behavioural responses support the assertion that fronts are important foraging habitats for marine predators, and suggest a possible mechanistic link between the two in terms of dive behaviour. This research also emphasises the importance of cross-disciplinary research when attempting to understand marine ecosystems.This work was funded by a PhD studentship to SLC by the Natural Environment Research Council (NERC; NE/J500380/1), Natural Resources Wales (Seabirds Cymru) and a NERC grant (NE/H007466/1)
    corecore