35 research outputs found

    Magnetic Reconnection In Two-Dimensional Magnetohydrodynamic Turbulence

    Get PDF
    The nonlinear dynamics of magnetic reconnection in turbulence is investigated through direct numerical simulations of decaying, incompressible, two-dimensional magnetohydrodynamics. Recently, it was shown by Servidio [Phys. Rev. Lett. 102, 115003 (2009)] that in fully developed turbulence complex processes of reconnection occur locally. Here, the main statistical features of these multiscale reconnection events are further described, providing details on the methodology. It is found that is possible to describe the reconnection process in turbulence as a generalized local Sweet-Parker process in which the parameters are locally controlled by the turbulence cascade, thus providing a step toward reconciling classical turbulence analysis with reconnection theory. This general description of reconnection may be useful for laboratory and space plasmas, where the presence of turbulence plays a crucial role. © 2010 American Institute of Physics.Fil: Servidio, S.. Universita Della Calabria; Italia. Bartol Research Institute; Estados UnidosFil: Matthaeus, W.H.. Bartol Research Institute; Estados UnidosFil: Shay, M.A.. Bartol Research Institute; Estados UnidosFil: Dmitruk, Pablo Ariel. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Cassak, P.A.. West Virginia University; Estados UnidosFil: Wan, M.. Bartol Research Institute; Estados Unido

    Magnetic Reconnection in Extreme Astrophysical Environments

    Full text link
    Magnetic reconnection is a basic plasma process of dramatic rearrangement of magnetic topology, often leading to a violent release of magnetic energy. It is important in magnetic fusion and in space and solar physics --- areas that have so far provided the context for most of reconnection research. Importantly, these environments consist just of electrons and ions and the dissipated energy always stays with the plasma. In contrast, in this paper I introduce a new direction of research, motivated by several important problems in high-energy astrophysics --- reconnection in high energy density (HED) radiative plasmas, where radiation pressure and radiative cooling become dominant factors in the pressure and energy balance. I identify the key processes distinguishing HED reconnection: special-relativistic effects; radiative effects (radiative cooling, radiation pressure, and Compton resistivity); and, at the most extreme end, QED effects, including pair creation. I then discuss the main astrophysical applications --- situations with magnetar-strength fields (exceeding the quantum critical field of about 4 x 10^13 G): giant SGR flares and magnetically-powered central engines and jets of GRBs. Here, magnetic energy density is so high that its dissipation heats the plasma to MeV temperatures. Electron-positron pairs are then copiously produced, making the reconnection layer highly collisional and dressing it in a thick pair coat that traps radiation. The pressure is dominated by radiation and pairs. Yet, radiation diffusion across the layer may be faster than the global Alfv\'en transit time; then, radiative cooling governs the thermodynamics and reconnection becomes a radiative transfer problem, greatly affected by the ultra-strong magnetic field. This overall picture is very different from our traditional picture of reconnection and thus represents a new frontier in reconnection research.Comment: Accepted to Space Science Reviews (special issue on magnetic reconnection). Article is based on an invited review talk at the Yosemite-2010 Workshop on Magnetic Reconnection (Yosemite NP, CA, USA; February 8-12, 2010). 30 pages, no figure

    Fractal Reconnection in Solar and Stellar Environments

    Full text link
    Recent space based observations of the Sun revealed that magnetic reconnection is ubiquitous in the solar atmosphere, ranging from small scale reconnection (observed as nanoflares) to large scale one (observed as long duration flares or giant arcades). Often the magnetic reconnection events are associated with mass ejections or jets, which seem to be closely related to multiple plasmoid ejections from fractal current sheet. The bursty radio and hard X-ray emissions from flares also suggest the fractal reconnection and associated particle acceleration. We shall discuss recent observations and theories related to the plasmoid-induced-reconnection and the fractal reconnection in solar flares, and their implication to reconnection physics and particle acceleration. Recent findings of many superflares on solar type stars that has extended the applicability of the fractal reconnection model of solar flares to much a wider parameter space suitable for stellar flares are also discussed.Comment: Invited chapter to appear in "Magnetic Reconnection: Concepts and Applications", Springer-Verlag, W. D. Gonzalez and E. N. Parker, eds. (2016), 33 pages, 18 figure

    MMS Measurements of the Vlasov Equation: Probing the Electron Pressure Divergence Within Thin Current Sheets

    Get PDF
    We investigate the kinetic structure of electron‐scale current sheets found in the vicinity of the magnetopause and embedded in the magnetosheath within the reconnection exhaust. A new technique for computing terms of the Vlasov equation using Magnetospheric Multiscale (MMS) measurements is presented and applied to study phase space density gradients and the kinetic origins of the electron pressure divergence found within these current sheets. Crescent‐shaped structures in ∇⊥2fe give rise to bipolar and quadrupolar signatures in v·∇fe measured near the maximum ∇·Pe inside the current layers. The current density perpendicular to the magnetic field is strong (J⊥∼2 μA/m2), and the thickness of the current layers ranges from 3 to 5 electron inertial lengths. The electron flows supporting the current layers mainly result from the combination of E×B and diamagnetic drifts. We find nonzero J·E′ within the current sheets even though they are observed apart from typical diffusion region signatures.publishedVersio

    Properties of Magnetic Reconnection and FTEs on the Dayside Magnetopause With and Without Positive IMF B-x Component During Southward IMF

    Get PDF
    This paper describes properties and behavior of magnetic reconnection and flux transfer events (FTEs) on the dayside magnetopause using the global hybrid-Vlasov code Vlasiator. We investigate two simulation runs with and without a sunward (positive)B-x component of the interplanetary magnetic field (IMF) when the IMF is southward. The runs are two-dimensional in real space in the noon-midnight meridional (polar) plane and three-dimensional in velocity space. Solar wind input parameters are identical in the two simulations with the exception that the IMF is purely southward in one but tilted 45 degrees toward the Sun in the other. In the purely southward case (i.e., without B-x) the magnitude of the magnetos heath magnetic field component tangential to the magnetopause is larger than in the run with a sunward tilt. This is because the shock normal is perpendicular to the IMF at the equatorial plane, whereas in the other run the shock configuration is oblique and a smaller fraction of the total IMF strength is compressed at the shock crossing. Hence, the measured average and maximum reconnection rate are larger in the purely southward run. The run with tilted IMF also exhibits a north-south asymmetry in the tangential magnetic field caused by the different angle between the IMF and the bow shock normal north and south of the equator. Greater north-south asymmetries are seen in the FTE occurrence rate, size, and velocity as well; FTEs moving toward the Southern Hemisphere are larger in size and observed less frequently than FTEs in the Northern Hemisphere.Peer reviewe

    Particle acceleration mechanisms

    Full text link
    We review the possible mechanisms for production of non-thermal electrons which are responsible for non-thermal radiation in clusters of galaxies. Our primary focus is on non-thermal Bremsstrahlung and inverse Compton scattering, that produce hard X-ray emission. We briefly review acceleration mechanisms and point out that in most astrophysical situations, and in particular for the intracluster medium, shocks, turbulence and plasma waves play a crucial role. We consider two scenarios for production of non-thermal radiation. The first is hard X-ray emission due to non-thermal Bremsstrahlung by nonrelativistic particles. Non-thermal tails are produced by accelerating electrons from the background plasma with an initial Maxwellian distribution. However, these tails are accompanied by significant heating and they are present for a short time of <10^6 yr, which is also the time that the tail will be thermalised. Such non-thermal tails, even if possible, can only explain the hard X-ray but not the radio emission which needs GeV or higher energy electrons. For these and for production of hard X-rays by the inverse Compton model, we need the second scenario where there is injection and subsequent acceleration of relativistic electrons. It is shown that a steady state situation, for example arising from secondary electrons produced from cosmic ray proton scattering by background protons, will most likely lead to flatter than required electron spectra or it requires a short escape time of the electrons from the cluster. An episodic injection of relativistic electrons, presumably from galaxies or AGN, and/or episodic generation of turbulence and shocks by mergers can result in an electron spectrum consistent with observations but for only a short period of less than one billion years.Comment: 22 pages, 5 figures, accepted for publication in Space Science Reviews, special issue "Clusters of galaxies: beyond the thermal view", Editor J.S. Kaastra, Chapter 11; work done by an international team at the International Space Science Institute (ISSI), Bern, organised by J.S. Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke

    Stochastic Acceleration by Turbulence

    Full text link
    The subject of this paper is stochastic acceleration by plasma turbulence, a process akin to the original model proposed by Fermi. We review the relative merits of different acceleration models, in particular the so called first order Fermi acceleration by shocks and second order Fermi by stochastic processes, and point out that plasma waves or turbulence play an important role in all mechanisms of acceleration. Thus, stochastic acceleration by turbulence is active in most situations. We also show that it is the most efficient mechanism of acceleration of relatively cool non relativistic thermal background plasma particles. In addition, it can preferentially accelerate electrons relative to protons as is needed in many astrophysical radiating sources, where usually there are no indications of presence of shocks. We also point out that a hybrid acceleration mechanism consisting of initial acceleration by turbulence of background particles followed by a second stage acceleration by a shock has many attractive features. It is demonstrated that the above scenarios can account for many signatures of the accelerated electrons, protons and other ions, in particular 3^3He and 4^4He, seen directly as Solar Energetic Particles and through the radiation they produce in solar flares.Comment: 29 pages 7 figures for proceedings of ISSI-Bern workshop on Particle Acceleration 201

    Review on Current Sheets in CME Development: Theories and Observations

    Get PDF

    The Scientific Foundations of Forecasting Magnetospheric Space Weather

    Get PDF
    The magnetosphere is the lens through which solar space weather phenomena are focused and directed towards the Earth. In particular, the non-linear interaction of the solar wind with the Earth's magnetic field leads to the formation of highly inhomogenous electrical currents in the ionosphere which can ultimately result in damage to and problems with the operation of power distribution networks. Since electric power is the fundamental cornerstone of modern life, the interruption of power is the primary pathway by which space weather has impact on human activity and technology. Consequently, in the context of space weather, it is the ability to predict geomagnetic activity that is of key importance. This is usually stated in terms of geomagnetic storms, but we argue that in fact it is the substorm phenomenon which contains the crucial physics, and therefore prediction of substorm occurrence, severity and duration, either within the context of a longer-lasting geomagnetic storm, but potentially also as an isolated event, is of critical importance. Here we review the physics of the magnetosphere in the frame of space weather forecasting, focusing on recent results, current understanding, and an assessment of probable future developments.Peer reviewe

    The Earth: Plasma Sources, Losses, and Transport Processes

    Get PDF
    This paper reviews the state of knowledge concerning the source of magnetospheric plasma at Earth. Source of plasma, its acceleration and transport throughout the system, its consequences on system dynamics, and its loss are all discussed. Both observational and modeling advances since the last time this subject was covered in detail (Hultqvist et al., Magnetospheric Plasma Sources and Losses, 1999) are addressed
    corecore