6,058 research outputs found

    A mesoscopic approach to diffusion phenomena in mixtures

    Get PDF
    The mesosocpic concept is applied to the theory of mixtures. The aim is to investigate the diffusion phenomenon from a mesoscopic point of view. The domain of the field quantities is extended by the set of mesoscopic variables, here the velocities of the components. Balance equations on this enlarged space are the equations of motion for the mesoscopic fields. Moreover, local distribution functions of the velocities are introduced as a statistical element, and an equation of motion for this distribution function is derived. From this equation of motion differential equations for the diffusion fluxes, and also for higher order fluxes are obtained. These equations are of balance type, as it is postulated in Extended Thermodynamics. The resulting evolution equation for the diffusion flux generalizes the Fick's law

    Fault-tolerance of a neural network solving the traveling salesman problem

    Get PDF
    This study presents the results of a fault-injection experiment that stimulates a neural network solving the Traveling Salesman Problem (TSP). The network is based on a modified version of Hopfield's and Tank's original method. We define a performance characteristic for the TSP that allows an overall assessment of the solution quality for different city-distributions and problem sizes. Five different 10-, 20-, and 30- city cases are sued for the injection of up to 13 simultaneous stuck-at-0 and stuck-at-1 faults. The results of more than 4000 simulation-runs show the extreme fault-tolerance of the network, especially with respect to stuck-at-0 faults. One possible explanation for the overall surprising result is the redundancy of the problem representation

    Design and optimization of a compact laser-driven proton beamline

    Get PDF
    Laser-accelerated protons, generated by irradiating a solid target with a short, energetic laser pulse at high intensity (I > 1018W·cm-2), represent a complementary if not outperforming source compared to conventional accelerators, due to their intrinsic features, such as high beam charge and short bunch duration. However, the broadband energy spectrum of these proton sources is a bottleneck that precludes their use in applications requiring a more reduced energy spread. Consequently, in recent times strong effort has been put to overcome these limits and to develop laser-driven proton beamlines with low energy spread. In this paper, we report on beam dynamics simulations aiming at optimizing a laser-driven beamline - i.e. a laser-based proton source coupled to conventional magnetic beam manipulation devices - producing protons with a reduced energy spread, usable for applications. The energy range of investigation goes from 2 to 20 MeV, i.e. the typical proton energies that can be routinely obtained using commercial TW-power class laser systems. Our beamline design is capable of reducing the energy spread below 20%, still keeping the overall transmission efficiency around 1% and producing a proton spot-size in the range of 10 mm2. We briefly discuss the results in the context of applications in the domain of Cultural Heritage

    Detection of C3O in the low-mass protostar Elias 18

    Get PDF
    We have performed new laboratory experiments which gave us the possibility to obtain an estimate of the amount of carbon chain oxides (namely C3O2, C2O, and C3O) formed after irradiation (with 200 keV protons) of pure CO ice, at 16 K. The analysis of laboratory data indicates that in dense molecular clouds, when high CO depletion occurs, an amount of carbon chain oxides as high as 2-3x10^-3 with respect to gas phase carbon monoxide can be formed after ion irradiation of icy grain mantles. Then we have searched for gas phase C2O and C3O towards ten low-mass young stellar objects. Among these we have detected the C3O line at 38486.891 MHz towards the low-mass protostar Elias 18. On the basis of the laboratory results we suggest that in dense molecular clouds gas phase carbon chain oxides are formed in the solid phase after cosmic ion irradiation of CO-rich icy mantles and released to the gas phase after desorption of icy mantles. We expect that the Atacama Large Millimeter Array (ALMA), thanks to its high sensitivity and resolution, will increase the number of carbon chain oxides detected in dense molecular clouds.Comment: 19 Pages, 5 figures, Accepted to Ap

    Garigliano nuclear power plant: seismic evaluation of the turbine building

    Get PDF
    The Italian Garigliano Nuclear Power Plant (NPP) started its energy production in 1963. At present it is in the decommissioning stage. In order to get a proper management of the radioactive waste that will be produced during the dismantling operations it has been considered convenient to convert the turbine building of the plant into a temporary waste repository. This decision posed a remarkable seismic safety assessment issue. As a matter of fact, the challenge was to extend, in satisfactory safety conditions, the use of an important facility that has reached the end of its designed lifetime and to have this extended use approved by nuclear safety agencies. In this context many tasks have been accomplished, of which the most important are: (a) a new appraisal of site seismic hazard; (b) the execution of many investigations and testing on the construction materials; (c) the set up of a detailed 3D finite element model including the explicit representation of foundation piles and soil; (d) consideration of soil structure kinematic and dynamic nteraction effects. This paper describes the adopted seismic safety assessment criteria which are based on a performance objectives design approach. While performance based design is the approach currently recommended by European Regulations to manage seismic risk and it is fully incorporated in the Italian code for conventional buildings, bridges and plants, NPP are not explicitly considered. Therefore it was necessary to delineate a consistent interpretation of prescribed rules in order to properly select the maximum and operating design earthquakes on one side and corresponding acceptable limit states on the other side. The paper further provides an outline of the numerical analyses carried out, of the main results obtained and of the principal retrofitting actions that will be realized

    Jets and outflows in Radio Galaxies: implications for AGN feedback

    Full text link
    One of the main debated astrophysical problems is the role of the AGN feedback in galaxy formation. It is known that massive black holes have a profound effect on the formation and evolution of galaxies, but how black holes and galaxies communicate is still an unsolved problem. For Radio Galaxies, feedback studies have mainly focused on jet/cavity systems in the most massive and X-ray luminous galaxy clusters. The recent high-resolution detection of warm absorbers in some Broad Line Radio Galaxies allow us to investigate the interplay between the nuclear engine and the surrounding medium from a different perspective. We report on the detection of warm absorbers in two Broad Line Radio Galaxies, 3C 382 and 3C 390.3, and discuss the physical and energetic properties of the absorbing gas. Finally, we attempt a comparison between radio-loud and radio-quiet outflows.Comment: To be published in the proceedings of High Energy Phenomena in Relativistic Outflows III (HEPRO III, IJMPCS). 4 pages, 2 figure

    Characteristics of the dynamics of breakdown filaments in Al2O3/InGaAs stacks

    Get PDF
    In this paper, the Al2O3/InGaAs interface was studied by X-ray photoelectron spectroscopy (XPS) after a breakdown (BD) event at positive bias applied to the gate contact. The dynamics of the BD event were studied by comparable XPS measurements with different current compliance levels during the BD event. The overall results show that indium atoms from the substrate move towards the oxide by an electro-migration process and oxidize upon arrival following a power law dependence on the current compliance of the BD event. Such a result reveals the physical feature of the breakdown characteristics of III-V based metal-oxide-semiconductor devices.Fil: Palumbo, FĂ©lix Roberto Mario. ComisiĂłn Nacional de EnergĂ­a AtĂłmica; Argentina. Universidad TecnolĂłgica Nacional; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; ArgentinaFil: Shekhter, P.. Technion - Israel Institute of Technology; IsraelFil: Cohen Weinfeld, K.. Technion - Israel Institute of Technology; IsraelFil: Eizenberg, M.. Technion - Israel Institute of Technology; Israe

    STRONG, INDEPENDENT, AND IN LOVE: FIGHTING FEMALE FANTASIES IN POPULAR CULTURE

    Get PDF
    During the late 1970s and 1980s, feminist critics like Janice Radway began to reconsider so-called women’s genres, like romance novels and soap operas and melodramas, in order to address the forms of subversion and expressions of agency they provided female audiences. However, in spite of greater willingness to consider the progressive potential in romance narratives, there has been little such consideration given to stories of romance for the fighting female character—defined as a protagonist who uses violence, via her body or weapons, to save herself and others. The fighting female has received a good deal of attention from critics like Yvonne Tasker, Sherrie Inness, Rikke Schubart, and Phillipa Gates because she enacts transgressive forms of femininity. However, the typical response has been to ignore the intimate or romantic relationships she has with men or to critique them based on the assumption that such hetero-relationships automatically limit her agency and attenuate her representation as a feminist-friendly heroine. This view presumes that female empowerment opposes or can only be imagined outside the dominant cultural narratives that generally organize women’s lives around their hetero-relationships—whether sexual or platonic, familial or vocational. As I argue, some fighting female relationship narratives merit our attention because they reveal a new cache of plausible empowered female identities that women negotiate through their intimacies and romances with men. These negotiations, in turn, enable innovative representations of male-female relationships that challenge long-standing cultural scripts about the nature of dominance and subordination in such relationships. Combining cultural analysis with close readings of key popular American film and television texts since the 1980s, my dissertation argues that certain fighting female relationship themes question regressive conventions in male-female intimacies and reveal potentially progressive ideologies regarding female agency in mass culture. In essence, certain fighting female relationship narratives project feminist-friendly love fantasies that reassure audiences of the desirability of empowered women while also imagining egalitarian intimacies that further empower women

    Energy chirp measurements by means of an RF deflector: a case study the gamma beam source LINAC at ELI-NP

    Get PDF
    RF Deflector (RFD) based measurements are widely used in high–brightness electron LINAC around the world in order to measure the ultra–short electron bunch length. The RFD provides a vertical kick to the particles of the electron bunch according to their longitudinal positions. In this paper, a measurement technique for the bunch length and other bunch proprieties, based on the usage of an RFD, is proposed. The basic idea is to obtain information about the bunch length, energy chirp, and energy spread from vertical spot size measurements varying the RFD phase, because they add contributions on this quantity. The case study is the Gamma Beam System (GBS), the Compton Source being built in the Extreme Light Infrastructure–Nuclear Physics (ELI–NP) facility. The ELEctron Generation ANd Tracking (ELEGANT) code is used for tracking the particles from RFD to the measurement screen
    • …
    corecore