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Abstract

The mesoscopic concept is applied to the theory of mixtures. The aim is to
investigate the di¤usion phenomenon from a mesoscopic point of view. The
domain of the field quantities is extended by the set of mesoscopic variables,
here the velocities of the components. Balance equations on this enlarged
space are the equations of motion for the mesoscopic fields. Moreover, local
distribution functions of the velocities are introduced as a statistical element,
and an equation of motion for this distribution function is derived. From this
equation of motion, di¤erential equations for the di¤usion fluxes and also for
higher order fluxes are obtained. These equations are of balance type, as it is
postulated in extended thermodynamics. The resulting evolution equation for
the di¤usion flux generalizes Fick’s law.

1. Introduction

Most phenomena involving mass di¤usion are described by means of Fick’s
law, which relates linearly the mass flow to the gradient of the mass concen-
tration through the di¤usion coe‰cient. In practical applications, Fick’s law
is satisfactory to a large extent. However, it is not applicable to transitory
situations involving for instance high frequencies. The mass balance together
with Fick’s law leads to parabolic di¤erential equations for the concentra-
tions, allowing for infinite velocities of propagation of disturbances. The last
paradox must be overcome by considering non-Fickian transport behavior

Bereitgestellt von | Technische Universität Berlin
Angemeldet

Heruntergeladen am | 15.10.18 18:52

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DepositOnce

https://core.ac.uk/display/161589227?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


for the di¤usive mass flux. A possible solution is given in extended thermody-
namics [1–5]. The di¤usion flux is introduced as an additional field variable,
obeying a di¤erential equation. This di¤erential equation is derived from an
irreversible thermodynamics treatment [6, 7] of the dissipation inequality (for
other applications see [8–13]), or a balance type equation for the nonconvec-
tive fluxes, here the di¤usion flux, is postulated in rational extended thermo-
dynamics [5, 14, 15]. For a purely macroscopic derivation of balance type
di¤erential equations for higher order fluxes see [16, 17]. Within rational ex-
tended thermodynamics, it has been shown that the resulting system of field
equations is symmetric hyperbolic with a convex extension [5, 18, 19], thereby
allowing for finite speeds of disturbances only [18, 20, 21].

A foundation of the field equations of extended thermodynamics has been
given in statistical mechanics. In most cases, the single particle distribution
function is used, together with the Boltzmann equation [5]. In this case micro-
scopic interactions are introduced via the collision term in the Boltzmann
equation. However, the Boltzmann equation is, strictly speaking, valid only
for dilute gases, and for liquids or solids a di¤erent foundation is necessary.
Such a background theory can be given using the BBGKY hierarchy [22–25]
for the hierarchy of N-particle distribution functions. The structure of the
field equations of extended thermodynamics could be derived from this statis-
tical mechanics background. Such an approach necessitates the knowledge of
microscopic interparticle interaction potentials.

An approach, di¤erent from microscopic statistical mechanics, is the so-
called mesoscopic theory [26, 29, 30]. It is a continuum theory, introducing
constitutive functions on a continuum level, and no microscopic interparticle
interactions. On the other hand, the mesoscopic description is more detailed
than the macroscopic description. This additional information leads to the
definition of internal variables in complex media, and to equations of motion
for them. This mesoscopic concept has been applied to liquid crystals [27, 31–
36], to damage and fracture mechanics [37, 38], and to dipolar media [28]. We
will show in the following that within the mesoscopic theory a balance type
equation for the di¤usion flux can be derived.

The basic idea of the mesoscopic theory is to introduce an additional vari-
able, the so-called mesoscopic variable, in the domain of the field quantities.
On this higher dimensional space a continuum theory is developed. In this
theory the mesoscopic field quantities depend not only on position and time,
but also on the mesoscopic variable. In addition, a local distribution function
of the mesoscopic variable is introduced as a statistical element. Macroscopic
fields are the averages of mesoscopic ones over the additional (mesoscopic)
variable.
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The aim of this paper is the application of the mesoscopic concept to an N-
component mixture and a derivation of di¤erential equations for the di¤usion
fluxes from the mesoscopic theory. The application of the resulting equations
to fast phenomena involving di¤usion processes is left for future work, as well
as the investigation whether our generalized di¤usion equation leads to hy-
perbolic field equations.

2. Mesoscopic concept and balance equations

The mesoscopic concept introduces the mesoscopic space,

ðm; x; tÞ aM�R3
x �Rt;

on which all field quantities are defined. Here m is a set of mesoscopic vari-
ables which is an element of a suitable manifold M on which an integration
can be defined. Beyond the use of additional variables, m the mesoscopic con-
cept introduces a statistical element, the so-called mesoscopic distribution
function (MDF) f ðm; x; tÞ generated by the di¤erent values of the mesoscopic
variable of the particles in a volume element,

f ðm; x; tÞC f ð�Þ; ð�ÞC ðm; x; tÞ a M� R3
x � Rt: ð1Þ

The MDF describes the distribution of m in a volume element around x at
time t, and therefore it is normalized:ð

f ðm; x; tÞ dm ¼ 1: ð2Þ

It is the probability density of having the particular value m of the meso-
scopic variable in the continuum element at position x and time t. Therefore
it is the fraction

f ðm; x; tÞ ¼ rðm; x; tÞ
rðx; tÞ : ð3Þ

Here rðx; tÞ is the macroscopic mass density. By use of Eq. (2) we obtain

rðx; tÞ ¼
ð
rðm; x; tÞ dm: ð4Þ

2.1. Balance equations

Let G denote a region in R3 �M and X the density of an extensive quantity.
Then the global quantity in the region G changes due to a flux over the
boundary of G and due to production and supply within G:
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d

dt

ð
G

X d 3x dm ¼
ð
qG

fXð�Þ daþ
ð
G

SX ð�Þ d 3x dm: ð5Þ

A generalized Reynolds transport theorem in the mesoscopic space, analo-
gous to the one in [39], is used to transform the time derivative, and Gauss
theorem is applied to the boundary integral. The boundary qG of G consists
of a boundary in position space and a boundary on the manifold M. Then we
have in regular points of the continuum the local mesoscopic balance [40]:

q

qt
Xð�Þ þ ‘x � ½vð�ÞXð�Þ � Sð�Þ� þ ‘m � ½wð�ÞXð�Þ � Rð�Þ� ¼ Sð�Þ ð6Þ

Here the independent field wð�Þ, defined on the mesoscopic space, describes
the change in time of the set of mesoscopic variables: With respect to m the
mesoscopic change velocity wð�Þ is the analogue to the mesoscopic material
velocity vð�Þ referring to x: If a particle is characterized by ðm; x; tÞ, then for
Dt ! þ0 it is characterized by ðmþ wð�ÞDt; xþ vð�ÞDt; tþ DtÞ at later times
tþ Dt. Besides the usual gradient, also the gradient with respect to the set of
mesoscopic variables appears. This expresses the fact that there is a flux over
the boundary on the manifold M.

According to Eq. (2) we obtain from the mesoscopic mass balance a balance
type di¤erential equation for the MDF f ð�Þ by inserting its definition [30, 41]:

q

qt
f ð�Þ þ ‘x � ½vð�Þ f ð�Þ� þ ‘m � ½wð�Þ f ð�Þ�

þ f ð�Þ q

qt
þ vð�Þ � ‘x

� �
ln %ðx; tÞ ¼ 0 ð7Þ

3. Application of the mesoscopic concept to mixtures

Let us consider a mixture of N di¤erent chemical components. The di¤erent
components are distinguished by a component index in capital letters. We
will introduce velocity distributions of all chemical components, denoted f A.
Each of them is a function of position of the respective continuum element,
time, and particle velocity. The function f Aðx; t; vÞ gives the probability den-
sity of finding the value v for the material velocity of component A of the
mixture in a volume element around x at time t.

The mesoscopic mass densities and all other mesoscopic fields are di¤erent
for di¤erent chemical components. Mesoscopic fields are denoted by a
‘‘hat’’, where this is necessary in order to distinguish them from the corre-
sponding macroscopic quantities.
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The distribution function f A is defined as follows:

f Aðx; t; vÞ ¼:
r̂rAðx; t; vÞ
rAðx; tÞ ð8Þ

f Aðx; t; vÞ dv gives the fraction of particles of component A having a material
velocity in the element dv on R3

v around v.

The distribution functions are normalized:

ð
R3

v

f Aðx; t; vÞ dv ¼ 1; EA ð9Þ

4. Macroscopic balance equations for the mixture and its
components

In this section, we shall recall briefly the macroscopic balance equations for
mixtures and for the di¤erent components.

The total mass of a mixture is a conserved quantity, while the mass of a par-
ticular component is not conserved if chemical reactions occur. The same
happens for momentum, and energy due to chemical reactions between di¤er-
ent components of the mixture. Therefore, in the balance equations for com-
ponents there are production terms on the right-hand side.

4.1. Macroscopic balance equations for the mixture

The balance equations for the mixture as a whole look the same as the bal-
ance equations for a one-component system [42, 43]. From the structure
of balance laws, mixtures cannot be distinguished from chemically pure
substances.

Balance of mass

qr

qt
ðx; tÞ þ ‘ � ðrvÞðx; tÞ ¼ 0 ð10Þ

Here v is the macroscopic material velocity of the mixture, i.e., the barycen-
tric velocity of all particles in the volume element.

Balance of momentum

q

qt
ðrvÞ þ ‘ � ðrvn v� tTÞ ¼ rf; ð11Þ
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where t denotes Cauchy stress tensor, and f is the acceleration (specific den-
sity of volume forces).

Balance of energy

q

qt
r eþ 1

2
v � v

� �� �
þ ‘ � q� v � tþ rv eþ 1

2
v � v

� �� �
� rðf � vþ rÞ ¼ 0;

ð12Þ

where e is the specific internal energy density (internal energy per unit mass),
q denotes the heat flux density, and r is the energy supply density.

4.2. Macroscopic balance equations for the components

Balance of mass of component A

The local balance of mass of component A, taking into account production of
mass of that component due to chemical reactions, reads:

qrA

qt
ðx; tÞ þ ‘ � ðrAvAÞðx; tÞ ¼ PA

chem; ð13Þ

where vA is the material velocity of component A. The mass densities of the
di¤erent chemical components are additive:

X
A

rA ¼ r ð14Þ

The material velocity v of the mixture is defined as the weighted sum of the
component velocities:

X
A

rAvA ¼ rv ð15Þ

Equation (13) may be cast in a more useful form in terms of mass fractions
cA defined by cA ¼ rA

r
, A ¼ 1; . . . ;N and the di¤usion fluxes JA,

JA ¼ rAðvA � vÞ; ð16Þ

such that
P

A JA ¼ 0. The mass fraction balance equation is

r
d

dt
cA þ ‘ � JA ¼ PA

chem; ð17Þ

where d
dt
¼ q

qt
þ v � ‘ is the material time derivative.
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Balance of momentum of component A

The momentum balance for one particular chemical component is:

q

qt
ðrAvAÞ þ ‘ � ðrAvAn vA � tA

T Þ ¼ rAfA þ PA
m ; ð18Þ

with a production PA
m of momentum of component A.

Balance of energy of component A

The energy balance equation is given by

q

qt
rA eA þ 1

2
vA � vA

� �� �
þ ‘ � qA � vA � tA þ rAvA eA þ 1

2
vA � vA

� �� �

� rAðfA � vA þ rAÞ ¼ PA
e ; ð19Þ

with a component energy production due to chemical reactions. In this set
of balance equations, constitutive equations for the component stress tensor,
component internal energy density, and heat flux density, and the produc-
tions due to chemical reactions are needed in order to close the system of
di¤erential equations. These constitutive quantities must be related to the
wanted fields in a material-dependent manner. The constitutive theory, in-
cluding restrictions on constitutive functions from general principles, is out
of the scope of the present paper.

The (total) energy density of the mixture is the sum over the components.
From the additivity of the extensive quantities mass, momentum, and energy
follows that the balances of the mixture are obtained summing up the compo-
nent equations [42, 43]. This leads to relations between constitutive quantities
for components and constitutive quantities for the mixture.

5. Mesoscopic balance equations for the mixture and its
components

Mesoscopic balance equations are defined on the mesoscopic space. For the
mixture as a whole the additional mesoscopic variable is the material velocity
v of the mixture, which is the weighted sum of the component velocities, see
Eq. (15). The mesoscopic balance equations are derived analogously to the
derivation discussed in the second section (see [6] for the general structure
of these balances) and by suitable identifications. The mesoscopic balance
equations for the mixture are those derived previously for the one component
system (see Section 2). In all cases it is supposed that the constituents of the
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mixture have no internal angular momentum, i.e., we are not dealing with
micropolar continua.

For the mixture we introduce the distribution function of the material velocity:

f ðx; t; vÞ ¼ f ð�Þ ¼ r̂rð�Þ
rðx; tÞ ð20Þ

Explicitly we have the following mesoscopic balances:

5.1. Mesoscopic balance equations for the mixture

Mesoscopic balance of mass

q

qt
ðr̂rÞð�Þ þ ‘ � ðr̂rvÞð�Þ þ ‘v � ðwr̂rÞð�Þ ¼ 0; ð21Þ

where ð�Þ is the abbreviation for ðx; t; vÞ, v and w are the mesoscopic velocity
of the mixture and the change in time of the mesoscopic variable v, respec-
tively ðw ¼ _vvÞ.

According to the definition of the distribution function Eq. (20), we obtain
from the mesoscopic mass balance (21) a di¤erential equation for the MDF
f ð�Þ:

qf ð�Þ
qt

þ ‘ � ð f ð�ÞvÞ þ ‘vð f ð�Þwð�ÞÞ þ f ð�Þ q

qt
þ v � ‘

� �
lg rðx; tÞ ¼ 0

ð22Þ

Mesoscopic balance of momentum

q

qt
ðr̂rvÞ þ ‘ � ðr̂rvn vÞ þ ‘v � ðr̂rwn vÞ � ‘ � t̂tT � ‘v � T̂TT ¼ r̂rf̂f; ð23Þ

with t̂tT ¼ t̂t and T̂T T ¼ T̂T. Here T̂T is the analogue in velocity space of the
stress tensor, i.e., the nonconvective momentum flux in velocity space. All
field quantities here depend on position, time and particle velocity.

As a result of definition (20), the macroscopic material velocity of the mix-
ture, vðx; tÞ, i.e., the mean velocity of the mixture, is expressed as follows:

rðx; tÞvðx; tÞ ¼
ð
R3

r̂rv dv ð24Þ

408 N. Palumbo et al.

J. Non-Equilib. Thermodyn. � 2005 �Vol. 30 �No. 4

Bereitgestellt von | Technische Universität Berlin
Angemeldet

Heruntergeladen am | 15.10.18 18:52



Mesoscopic balance of energy

q

qt
r̂r êeþ 1

2
v � v

� �� �
þ ‘ � q̂q� v � t̂tþ r êeþ 1

2
v � v

� �
v

� �

þ‘v � Q̂Q� w � T̂Tþ r̂rw êeþ 1

2
v � v

� �� �
¼ r̂rðf̂f � vþ r̂rÞ þ P̂Pe ð25Þ

Q is the analogue to the heat flux density in velocity space, i.e., a nonconvec-
tive energy flux over the boundary in the mesoscopic part of the domain,
which consists of position, time and velocity for all fields here.

By integrating these mesoscopic balances over the mesoscopic space, i.e., over
all velocities, with the mesoscopic distribution function as statistical weight,
the macroscopic balance equations for the mixture are obtained.

5.2. Mesoscopic balance equations for the components of the mixture

Mesoscopic balance of mass of component A

By using the general form of the mesoscopic balance of mass (see also [30, 33,
41, 44]), we have the following equation for the component A:

q

qt
ðr̂rAÞð�Þ þ ‘ � ðr̂rAvAÞð�Þ þ ‘v � ðwAr̂rAÞð�Þ ¼ P̂PA

chemð�Þ; ð26Þ

where vA represents the material velocity of component A, and wA is the
change in time of the mesoscopic variable vA: wA ¼ _vvA. This acceleration wA

is a mesoscopic constitutive function. The term on the right hand side repre-
sents a production due to chemical reactions.

The sum of the mass balances of the di¤erent components is the mass balance
of the mixture, because the mass densities are additive:

X
A¼1;...;N

r̂rA ¼ r̂r; ð27Þ

q

qt

X
A

ðr̂rAÞ þ ‘ �
X
A

ðr̂rAvAÞ þ ‘v �
X
A

ðwAr̂rAÞ ¼
X
A

P̂PA
chem: ð28Þ

By comparing in Eqs. (28) and (21) the fluxes in mesoscopic space and in
position space, we obtain the following relations:
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X
A

‘v � ðwAr̂rAÞ ¼ ‘v � ðwr̂rÞ; ð29Þ

X
A

‘ � ðr̂rAvAÞ ¼ ‘ � ðr̂rvÞ; ð30Þ

and for the production terms,

X
A

P̂PA
chem ¼ 0: ð31Þ

A solution of Eqs. (29) and (30) is

w ¼
X
A

r̂rA

r̂r
wA; ð32Þ

v ¼
X
A

r̂rA

r̂r
vA: ð33Þ

Mesoscopic distribution function for the components

The distribution function f Aðx; t; vÞ gives the probability density of finding a
particle of component A with velocity vA in the volume element around x at
time t. It is the mass fraction

f Aðx; t; vÞ ¼ r̂rAðx; t; vÞ
rAðx; tÞ : ð34Þ

The mesoscopic balance of mass for component A, Eq. (26), can be used to
derive an equation of motion for the distribution function:

qf A

qt
þ ‘ � ð f AvAÞ þ ‘v � ð f AwAÞ

þ f A q

qt
þ vA � ‘

� �
lg rAðx; tÞ ¼ P̂PA

chem

rAðx; tÞ ð35Þ

Introducing the macroscopic fields by integrating over the mesoscopic part of
the enlarged domain, here the velocity, with the component distribution func-
tion as probability density, we can transform local mesoscopic balances into
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local macroscopic balances. So, the definition of the macroscopic material ve-
locity of the component A, vAðx; tÞ, i.e., the mean velocity of the component
A of the mixture, is

rAvAðx; tÞ ¼
ð
R3

r̂rAv dv; ð36Þ

and Eq. (26) leads to the macroscopic mass balance of component A (13) if
we take

ð
‘v � ½wAr̂rA� dv ¼ 0 ð37Þ

into consideration. This holds because of Gauss’s theorem and because f Að�Þ,
restricted to the mesoscopic part, has a compact support.

Relation between the mesoscopic distribution functions of the components and
the distribution function of the mixture

The velocity distribution function of a particular component f A was defined
as

f Aðx; t; vÞ ¼ r̂rAðx; t; vÞ
rAðx; tÞ ; ð38Þ

and the velocity distribution of the mixture is

f ðx; t; vÞ ¼ r̂rðx; t; vÞ
rðx; tÞ : ð39Þ

Because the mass densities of the di¤erent chemical components are
additive,

X
A

r̂rAðx; t; vÞ ¼ r̂rðx; t; vÞ;
X
A

rAðx; tÞ ¼ rðx; tÞ; ð40Þ

we end up with a relation between the distribution functions of the compo-
nents and that of the mixture:

X
A

f Aðx; t; vÞrAðx; tÞ ¼
X
A

r̂rAðx; t; vÞ ¼ r̂rðx; t; vÞ ¼ f ðx; t; vÞrðx; tÞ

ð41Þ
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or

X
A

f Aðx; t; vÞ r
Aðx; tÞ
rðx; tÞ ¼ f ðx; t; vÞ ð42Þ

The distribution function of the mixture is the sum of the component dis-
tribution functions, weighted with the mass fractions of the components.

Mesoscopic balance of momentum of component A

q

qt
ðr̂rAvAÞ þ ‘ � ðr̂rAvAn vAÞ þ ‘v � ðr̂rAwAn vAÞ

�‘ � t̂tA � ‘v � T̂TA ¼ r̂rAF̂FA þ P̂PA
m : ð43Þ

The mesoscopic momenta r̂rAvA are additive, and summing up Eq. (43) over
the di¤erent components one obtains the mesoscopic balance of momentum
(23). By comparing the fluxes in position space and in velocity space, respec-
tively, we have

t̂t ¼
X
A

ð̂ttA � r̂rAdvAn dvAÞ; ð44Þ

T̂T ¼
X
A

ðT̂TA � r̂rAdwAn dvAÞ; ð45Þ

where we have introduced the abbreviations

dvA ¼ vA � v; dwA ¼ wA � w: ð46Þ

Finally, a comparison of the production terms in the mesoscopic balances of
momentum for the sum of components on one hand, and for the mixture on
the other hand, leads to the relation

r̂rf̂f ¼
X
A

ðr̂rAf̂fA þ P̂PA
m Þ: ð47Þ

By integrating over the mesoscopic space the macroscopic momentum bal-
ance for component A, Eq. (18) is obtained.
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Mesoscopic balance of energy of component A

For particles of component A and particle velocity vA we have

q

qt
r̂rA êeA þ 1

2
vA � vA

� �� �
þ ‘ � q̂qA � vA � t̂tA þ rA êeA þ 1

2
vA � vA

� �
vA

� �

þ ‘v � Q̂QA � wA � T̂TA þ r̂rAwA êeA þ 1

2
vA � vA

� �� �

¼ r̂rAðf̂fA � vA þ r̂rAÞ þ P̂PA
e : ð48Þ

As before, by summing over all components of the mixture one obtains the
mesoscopic balance of energy (25), and the integration over R3 leads to the
macroscopic balance of energy expressed by Eq. (12).

6. Constitutive quantities for the components compared to those
for the mixture

Analogously to the previous section, the flux terms and the production terms
in the balance equations of the mesoscopic mixture and the sum of the com-
ponent equations are compared. As a result the internal energy density of the
mixture, the heat flux and its analogue in mesoscopic space, and the energy
absorption density of the mixture are expressed by the following relations:

r̂rêe ¼
X
A

r̂rAêeA þ 1

2
r̂rAdvA � dvA

� �
; ð49Þ

q̂q ¼
X
A

q̂qA � dvA � t̂tA þ r̂rAêeAdvA þ 1

2
½r̂rAðdvA � dvAÞdvA�

� �
; ð50Þ

Q̂Q ¼
X
A

�
Q̂QA � r̂rAðw � dwAÞdvA � dwA � T̂TA þ r̂rAêeAdwA

þ r̂rAðdvA � vÞdwA þ 1

2
½r̂rAðdvA � dvAÞdwA�

�
; ð51Þ

r̂rr̂r ¼
X
A

ðr̂rAr̂rA þ r̂rAvA � df̂fAÞ with df̂fA ¼ f̂fA � f̂f; ð52Þ

P̂Pe ¼
X
A

P̂PA
e : ð53Þ

Equations (49) to (53) show that the mesoscopic constitutive quantities of the
mixture are not, in general, the sum of the corresponding constitutive quanti-
ties of the components, but some fluctuation terms contribute.
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7. Evolution equations for di¤usion fluxes

The aim of this section is to obtain evolution equations for di¤usion fluxes of
the di¤erent components. By using relations (24), (36) and the definitions (8),
(20) it is possible to define the di¤usion flux JA, expressed by equation (16),
as follows:

JAðx; tÞ ¼ rAðx; tÞ
ð
R3
½ f Að�Þ � f ð�Þ�v dM, ð54Þ

where integration is over the mesoscopic variable v A M.

In order to derive evolution equations for fluxes let us introduce the family of
the macroscopic fields of order parameters which is defined by di¤erent mo-
ments of the distribution functions f Að�Þ and f ð�Þ. They are defined as

aA
k ¼

ð
R3

f Að�Þ v . . . v|fflffl{zfflffl}
k

dM;

�
ð55Þ

ak ¼
ð
R3

f ð�Þ v . . . v|fflffl{zfflffl}
k

dM;
�

ð56Þ

where . . .

�

denotes the symmetric irreducible (traceless) part of a tensor [33].
These fields of order parameters describe macroscopically the mesoscopic
state of the system introduced by vA and v and its distribution functions f A

and f . Thus these are the link between the mesoscopic background descrip-
tion of the system and its extended description by additional macroscopic
fields. In a macroscopic phenomenological theory, they represent in general
internal variables which satisfy relaxation equations. In our case, the first mo-
ments a1 and aA

1 are not internal variables, but classical wanted fields, namely
the specific momentum densities (material velocities) v and vA. The higher
order moments are internal variables in the sense of thermodynamics.

The di¤usion fluxes JA ðA ¼ 1; . . . ;NÞ are proportional to the di¤erence of
the first moment of the distribution functions f Að�Þ and f ð�Þ. If we multiply
Eqs. (35) and (22) with the mesoscopic variable and integrate over the mani-
fold M, here the velocity space, we obtain, respectively,ð

R3

q

qt
½ f Að�ÞvA� dMþ

ð
R3

‘ � ½vAf Að�ÞvA� dM

þ
ð
R3

vA‘v � ½wAð�Þ f Að�Þ� dM

þ
ð
R3

f AvA
q

qt
þ v � ‘

� �
lg rAðx; tÞ dM ¼

ð
R3

P̂PA
chem

rAðx; tÞ dM ð57Þ
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and ð
R3

q

qt
½ f ð�Þv� dMþ

ð
R3

‘ � ½vf ð�Þv� dM

þ
ð
R3

v‘v � ½wð�Þ f ð�Þ� dMþ
ð
R3

f v
q

qt
þ v � ‘

� �
lg rðx; tÞ dM ¼ 0:

The mesoscopic manifold M, here the R3 spanned by the velocities v, is time
independent. The time derivative and the derivative with respect to position
can be interchanged with the integration over M. We split the mesoscopic
velocity into the macroscopic velocity and the deviation from this average,
respectively, for component A and the mixture,

vð�Þ ¼ vAðx; tÞ þ dvA ð58Þ

and

vð�Þ ¼ vðx; tÞ þ dv: ð59Þ

The resulting equations of motion for the first moments aA
1 and a1 are,

respectively,

q

qt
aA

1 þ ‘ � vAðx; tÞaA
1 þ

ð
R3

dvAð�Þ f Að�ÞvA dM

� �

þ
ð
R3

vA‘v � ½ f Að�ÞwAð�Þ� dMþ aA
1

q

qt
þ vAðx; tÞ � ‘

� �
lg rAðx; tÞ

þ ‘ lg rAðx; tÞ
ð
R3

dvAð�Þ f Að�ÞvA dM ¼ 1

rAðx; tÞ

ð
P̂PA
chemv

A dM ð60Þ

and

q

qt
a1 þ ‘ � vðx; tÞa1 þ

ð
R3

dvð�Þ f ð�Þv dM
� �

þ
ð
R3

v‘v � ½ f ð�Þwð�Þ� dMþ a1
q

qt
þ vðx; tÞ � ‘

� �
lg rðx; tÞ

þ‘ lg rðx; tÞ
ð
R3

dvð�Þ f ð�Þv dM ¼ 0: ð61Þ

We now introduce some approximations: the deviations dvA and dv vanish,
i.e., the mesoscopic variable v has the value of the barycentric velocity. In
other words, we suppose vAð�Þ ¼ vAðx; tÞ and vð�Þ ¼ vðx; tÞ.

A mesoscopic approach to di¤usion phenomena in mixtures 415

J. Non-Equilib. Thermodyn. � 2005 �Vol. 30 � No. 4

Bereitgestellt von | Technische Universität Berlin
Angemeldet

Heruntergeladen am | 15.10.18 18:52



By computing the di¤erence of Eqs. (60) and (61) and taking into account
these approximations, one has:

q

qt
ðaA

1 � a1Þ þ ‘ � ðvAaA
1 � va1Þ þ

ð
R3

v‘v � f Að�ÞwAð�Þ

� f ð�Þwð�Þ dMþ aA
1

q

qt
þ vAðx; tÞ � ‘

� �
lg rAðx; tÞ

� a1
q

qt
þ vðx; tÞ � ‘

� �
lg rðx; tÞ ¼ 1

rðx; tÞ

ð
R3

P̂PA
chem dM: ð62Þ

The last equation (62) represents a general phenomenological evolution equa-
tion for di¤usion fluxes in an ‘‘extended theory’’. Using further approxima-
tions, it is possible to obtain a Cattaneo-type di¤usion equation. In order to
exploit Eq. (62) further, it is necessary to insert expressions for w and wA.
These are equations on the mesoscopic level, and they can be interpreted as
mesoscopic constitutive equations. In this case, the domain of constitutive
mappings, the state space has to be introduced. In mesoscopic theories there
are di¤erent possibilities: one is to introduce a state space of purely mesoscopic
variables, another one is to introduce a mixed space including mesoscopic
and macroscopic variables, and the third possibility is one containing only
macroscopic variables. The mesoscopic background of the constitutive theory
has been applied to liquid crystals of uniaxial molecules [34, 41, 45, 46] and
to dipolar media [28]. For di¤usion in mixtures this is left for future work.

8. Conclusions

We have shown a way to derive a di¤erential equation for the di¤usion flux
from the so-called mesoscopic theory. In this refined theory, an additional
variable in the domain of the field quantities is introduced, here the velocity,
and we have a velocity distribution. We have derived a di¤erential equation
for the di¤usion flux from the mesocopic balance equations. The di¤erential
equation for the di¤usion flux is of balance type, i.e., of the form used in
extended thermodynamics. Therefore, it can be expected that our approach
leads to hyperbolic systems of field equations, but the investigation of this
question is left for future work.

Because the level here is not the microscopic one, no assumptions about inter-
particle interactions have to be made here in contrast to kinetic theory. We
are here on the continuum level, and many-particle interactions are taken
into account automatically. This is not the case for derivations of the field
equations of extended thermodynamics based on the Boltzmann equation.
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