1,585 research outputs found
The RD53 Collaboration's SystemVerilog-UVM Simulation Framework and its General Applicability to Design of Advanced Pixel Readout Chips
The foreseen Phase 2 pixel upgrades at the LHC have very challenging
requirements for the design of hybrid pixel readout chips. A versatile pixel
simulation platform is as an essential development tool for the design,
verification and optimization of both the system architecture and the pixel
chip building blocks (Intellectual Properties, IPs). This work is focused on
the implemented simulation and verification environment named VEPIX53, built
using the SystemVerilog language and the Universal Verification Methodology
(UVM) class library in the framework of the RD53 Collaboration. The environment
supports pixel chips at different levels of description: its reusable
components feature the generation of different classes of parameterized input
hits to the pixel matrix, monitoring of pixel chip inputs and outputs,
conformity checks between predicted and actual outputs and collection of
statistics on system performance. The environment has been tested performing a
study of shared architectures of the trigger latency buffering section of pixel
chips. A fully shared architecture and a distributed one have been described at
behavioral level and simulated; the resulting memory occupancy statistics and
hit loss rates have subsequently been compared.Comment: 15 pages, 10 figures (11 figure files), submitted to Journal of
Instrumentatio
Band gaps in the relaxed linear micromorphic continuum
In this note we show that the relaxed linear micromorphic model recently
proposed by the authors can be suitably used to describe the presence of
band-gaps in metamaterials with microstructures in which strong contrasts of
the mechanical properties are present (e.g. phononic crystals and lattice
structures). This relaxed micromorphic model only has 6 constitutive parameters
instead of 18 parameters needed in Mindlin- and Eringen-type classical
micromorphic models. We show that the onset of band-gaps is related to a unique
constitutive parameter, the Cosserat couple modulus which starts to
account for band-gaps when reaching a suitable threshold value. The limited
number of parameters of our model, as well as the specific effect of some of
them on wave propagation can be seen as an important step towards indirect
measurement campaigns
Characterization of CMOS Spiral Inductors
In this work "full-wave" simulations of integrated inductors are presented and compared with measurements of fabricated CMOS chips. The good agreement between measurements and simulations demonstrates the accuracy of the tool, which is, hence, a cheaper alternative to experimental characterization. Furthermore, the proposed approach may give precious hints for performance improvements, by making internal device fields and currents available for the VLSI designer and providing compact, most effective, equivalent models
Analysis of parameter-independent PLLs with bang-bang phase-detectors
The parameter-independent design of Phase-Locked Loops (PLLs) is investigated for the case that a bang-bang phase-detector is used. Two self-biased CMOS PLL structures are proposed and compared, one l eading to a completely parameter- and frequency independent behavior. If the PLL frequency operation is constant and known in advance, however, both structures can be made independent of the transisto r Vt and b parameters
A 40 MHz clock and trigger recovery circuit for the CMS tracker fabricated in a 0.25 CMOS technology and using a self calibration technique
Development of collateral veins as a favorable prognostic factor for complete recovery in cerebral venous thrombosis due to Tribulus terrestris
The effects of LHC civil engineering on the SPS and LEP machines
The LHC will utilise much of the existing LEP infrastructure but will require many new surface buildings and several smaller underground structures, two new transfer tunnels from the SPS to the LHC an d two huge cavern complexes to house the ATLAS and CMS experiments. Excavation for the underground structures will start while LEP and SPS are running, causig the existing tunnels in close proximity t o move. The predicted movements are of sufficient amplitude to prevent machine oepration if no precautions are taken
Fast Polycrystalline-CdTe Detectors for LHC Luminosity Measurements
Beam diagnostics in future high-energy accelerators will require long lived instrumentation in highly hostile radiation environments. A research program aiming at individuating new solutions and testing them under extreme operational conditions has been launched at CERN in the framework of developments for the LHC instrumentation. Its outcome might be used in future accelerator projects, in industry or in physics applications. The detectors which will be adopted for the LHC luminosity monitoring and optimization will be installed close to or inside copper absorbers specifically designed for radiation protection of the accelerator magnetic elements in the interaction regions. These detectors will have to withstand extreme radiation levels and their long-term operation has to be assured without requiring human intervention. Polycrystalline-CdTe detectors have demonstrated their radiation hardness against extreme doses of X-ray exposure in the LEP collider and are considered as good candidates for LHC luminosity monitoring applications. After recalling a series of measurements obtained on CdTe samples exposed to different sources to study their time response and sensitivity we present results on their performance after irradiation at doses of 10^16 neutrons/cm^2. This is a preliminary step in the program intended to test the samples during and after irradiation up to levels of 10^18 neutrons/cm^2 and 10^16 protons/cm^2 comparable to those anticipated at the detector locations over ten years of operation of the accelerator
- …
