177 research outputs found

    Shortest path discovery of complex networks

    Get PDF
    In this paper we present an analytic study of sampled networks in the case of some important shortest-path sampling models. We present analytic formulas for the probability of edge discovery in the case of an evolving and a static network model. We also show that the number of discovered edges in a finite network scales much slower than predicted by earlier mean field models. Finally, we calculate the degree distribution of sampled networks, and we demonstrate that they are analogous to a destructed network obtained by randomly removing edges from the original network.Comment: 10 pages, 4 figure

    Magnetic induction mapping of magnetite chains in magnetotactic bacteria at room temperature and close to the Verwey transition using electron holography

    Get PDF
    Off-axis electron holography in the transmission electron microscope is used to record magnetic induction maps of closely spaced magnetite crystals in magnetotactic bacteria at room temperature and after cooling the sample using liquid nitrogen. The magnetic microstructure is related to the morphology and crystallography of the particles, and to interparticle interactions. At room temperature, the magnetic signal is dominated by interactions and shape anisotropy, with highly parallel and straight field lines following the axis of each chain of crystals closely. In contrast, at low temperature the magnetic induction undulates along the length of the chain. This behaviour may result from a competition between interparticle interactions and an easy axis of magnetisation that is no longer parallel to the chain axis. The quantitative nature of electron holography also allows the change in magnetisation in the crystals with temperature to be measured

    Microbiology and atmospheric processes: Biological, physical and chemical characterization of aerosol particles

    Get PDF
    The interest in bioaerosols has traditionally been linked to health hazards for humans, animals and plants. However, several components of bioaerosols exhibit physical properties of great significance for cloud processes, such as ice nucleation and cloud condensation. To gain a better understanding of their influence on climate, it is therefore important to determine the composition, concentration, seasonal fluctuation, regional diversity and evolution of bioaerosols. In this paper, we will review briefly the existing techniques for detection, quantification, physical and chemical analysis of biological particles, attempting to bridge physical, chemical and biological methods for analysis of biological particles and integrate them with aerosol sampling techniques. We will also explore some emerging spectroscopy techniques for bulk and single-particle analysis that have potential for in-situ physical and chemical analysis. Lastly, we will outline open questions and further desired capabilities (e. g., in-situ, sensitive, both broad and selective, on-line, time-resolved, rapid, versatile, cost-effective techniques) required prior to comprehensive understanding of chemical and physical characterization of bioaerosols

    Bundling by volume exclusion in non-equilibrium spaghetti

    Full text link
    In physical networks, like the brain or metamaterials, we often observe local bundles, corresponding to locally aligned link configurations. Here we introduce a minimal model for bundle formation, modeling physical networks as non-equilibrium packings of hard-core 3D elongated links. We show that growth is logarithmic in time, in stark contrast with the algebraic behavior of lower dimensional random packing models. Equally important, we find that this slow kinetics is metastable, allowing us to analytically predict an algebraic growth due to the spontaneous formation of bundles. Our results offer a mechanism for bundle formation resulting purely from volume exclusion, and provide a benchmark for bundling activation and growth during the assembly of physical networks

    BspRI restriction endonuclease: cloning, expression in Escherichia coli and sequential cleavage mechanism

    Get PDF
    The GGCC-specific restriction endonuclease BspRI is one of the few Type IIP restriction endonucleases, which were suggested to be a monomer. Amino acid sequence information obtained by Edman sequencing and mass spectrometry analysis was used to clone the gene encoding BspRI. The bspRIR gene is located adjacently to the gene of the cognate modification methyltransferase and encodes a 304 aa protein. Expression of the bspRIR gene in Escherichia coli was dependent on the replacement of the native TTG initiation codon with an ATG codon, explaining previous failures in cloning the gene using functional selection. A plasmid containing a single BspRI recognition site was used to analyze kinetically nicking and second-strand cleavage under steady-state conditions. Cleavage of the supercoiled plasmid went through a relaxed intermediate indicating sequential hydrolysis of the two strands. Results of the kinetic analysis of the first- and second-strand cleavage are consistent with cutting the double-stranded substrate site in two independent binding events. A database search identified eight putative restriction-modification systems in which the predicted endonucleases as well as the methyltransferases share high sequence similarity with the corresponding protein of the BspRI system. BspRI and the related putative restriction endonucleases belong to the PD-(D/E)XK nuclease superfamily

    Mineralogy of sulfides

    Get PDF
    Metal sulphides are the most important group of ore minerals. As shown in this brief introduction, much is known about their compositions, crystal structures, phase relations and paragenesis. Much less is known about their surface chemistry and, in particular, about their biogeochemistry, and about the formation and behaviour of ‘nanoparticle’ sulphides, whether formed abiotically or biogenically. These are large and complex topics which can only be touched upon in this article which also serves to direct readers to more comprehensive accounts

    Cytosine-to-Uracil Deamination by SssI DNA Methyltransferase

    Get PDF
    The prokaryotic DNA(cytosine-5)methyltransferase M.SssI shares the specificity of eukaryotic DNA methyltransferases (CG) and is an important model and experimental tool in the study of eukaryotic DNA methylation. Previously, M.SssI was shown to be able to catalyze deamination of the target cytosine to uracil if the methyl donor S-adenosyl-methionine (SAM) was missing from the reaction. To test whether this side-activity of the enzyme can be used to distinguish between unmethylated and C5-methylated cytosines in CG dinucleotides, we re-investigated, using a sensitive genetic reversion assay, the cytosine deaminase activity of M.SssI. Confirming previous results we showed that M.SssI can deaminate cytosine to uracil in a slow reaction in the absence of SAM and that the rate of this reaction can be increased by the SAM analogue 5’-amino-5’-deoxyadenosine. We could not detect M.SssI-catalyzed deamination of C5-methylcytosine (m5C). We found conditions where the rate of M.SssI mediated C-to-U deamination was at least 100-fold higher than the rate of m5C-to-T conversion. Although this difference in reactivities suggests that the enzyme could be used to identify C5-methylated cytosines in the epigenetically important CG dinucleotides, the rate of M.SssI mediated cytosine deamination is too low to become an enzymatic alternative to the bisulfite reaction. Amino acid replacements in the presumed SAM binding pocket of M.SssI (F17S and G19D) resulted in greatly reduced methyltransferase activity. The G19D variant showed cytosine deaminase activity in E. coli, at physiological SAM concentrations. Interestingly, the C-to-U deaminase activity was also detectable in an E. coli ung+ host proficient in uracil excision repair

    Using shotgun sequence data to find active restriction enzyme genes

    Get PDF
    Whole genome shotgun sequence analysis has become the standard method for beginning to determine a genome sequence. The preparation of the shotgun sequence clones is, in fact, a biological experiment. It determines which segments of the genome can be cloned into Escherichia coli and which cannot. By analyzing the complete set of sequences from such an experiment, it is possible to identify genes lethal to E. coli. Among this set are genes encoding restriction enzymes which, when active in E. coli, lead to cell death by cleaving the E. coli genome at the restriction enzyme recognition sites. By analyzing shotgun sequence data sets we show that this is a reliable method to detect active restriction enzyme genes in newly sequenced genomes, thereby facilitating functional annotation. Active restriction enzyme genes have been identified, and their activity demonstrated biochemically, in the sequenced genomes of Methanocaldococcus jannaschii, Bacillus cereus ATCC 10987 and Methylococcus capsulatus
    corecore