11 research outputs found

    Species information in whistle frequency modulation patterns of common dolphins

    Get PDF
    Funding for this project was generously provided by the Office of Naval Research Marine Mammals and Biology program.The most flexible communication systems are those of open-ended vocal learners that can acquire new signals throughout their lifetimes. While acoustic signals carry information in general voice features that affect all of an individual's vocalizations, vocal learners can also introduce novel call types to their repertoires. Delphinids are known for using such learned call types in individual recognition, but their role in other contexts is less clear. We investigated the whistles of two closely related, sympatric common dolphin species, Delphinus delphis and Delphinus bairdii, to evaluate species differences in whistle contours. Acoustic recordings of single-species groups were obtained from the Southern California Bight. We used an unsupervised neural network to categorize whistles and compared the resulting whistle types between species. Of the whistle types recorded in more than one encounter, 169 were shared between species and 60 were species-specific (32 D. delphis types, 28 D. bairdii types). Delphinus delphis used 15 whistle types with an oscillatory frequency contour while only one such type was found in D. bairdii. Given the role of vocal learning in delphinid vocalizations, we argue that these differences in whistle production are probably culturally driven and could help facilitate species recognition between Delphinus species.Publisher PDFPeer reviewe

    Clinical outcomes and response to treatment of patients receiving topical treatments for pyoderma gangrenosum: a prospective cohort study

    Get PDF
    Background: pyoderma gangrenosum (PG) is an uncommon dermatosis with a limited evidence base for treatment. Objective: to estimate the effectiveness of topical therapies in the treatment of PG. Methods: prospective cohort study of UK secondary care patients with a clinical diagnosis of PG suitable for topical treatment (recruited July 2009 to June 2012). Participants received topical therapy following normal clinical practice (mainly Class I-III topical corticosteroids, tacrolimus 0.03% or 0.1%). Primary outcome: speed of healing at 6 weeks. Secondary outcomes: proportion healed by 6 months; time to healing; global assessment; inflammation; pain; quality-of-life; treatment failure and recurrence. Results: Sixty-six patients (22 to 85 years) were enrolled. Clobetasol propionate 0.05% was the most commonly prescribed therapy. Overall, 28/66 (43.8%) of ulcers healed by 6 months. Median time-to-healing was 145 days (95% CI: 96 days, ∞). Initial ulcer size was a significant predictor of time-to-healing (hazard ratio 0.94 (0.88;80 1.00); p = 0.043). Four patients (15%) had a recurrence. Limitations: No randomised comparator Conclusion: Topical therapy is potentially an effective first-line treatment for PG that avoids possible side effects associated with systemic therapy. It remains unclear whether more severe disease will respond adequately to topical therapy alone

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    An examination of the whistling behavior of small odontocetes and the development of methods for species identification of delphinid whistles

    No full text
    The distribution and abundance of cetaceans has traditionally been investigated by conducting visual line transect surveys; however, visual detection and identification can be challenging because cetaceans spend much of their lives completely under water. Some limitations inherent to visual surveys may be overcome with the addition of passive acoustic methods. Many cetaceans produce distinctive sounds that propagate well under water and therefore acoustic techniques can be used to detect and identify them. This dissertation advances the role of passive acoustic monitoring during visual surveys by examining the whistling behavior of small odontocetes and developing methods for species identification of delphinid whistles. Chapter one provides an introduction to sounds produced by delphinids and prior research on acoustic species identification. Chapter two examines whistle use by small odontocetes. Data collected during visual and acoustic line transect surveys suggests that species in the eastern tropical Pacific Ocean whistle more frequently than species in the eastern North Pacific Ocean. Seven hypotheses to explain this trend are discussed. Group size seems to be an important factor in the whistling behavior of delphinid schools, however the distribution of whistling vs. non-whistling species does not likely have a simple univariate explanation. Whistling behavior and whistle structure are still largely unknown for many species. This is illustrated in chapter three, which provides the first description of the whistles of a seldom-recorded delphinid species in the Pacific Ocean, Lagenodelphis hosei. The remaining chapters focus on acoustic species identification. In chapter four, discriminant function analysis (DFA) and classification and regression tree analysis (CART) are used to classify the whistles of nine delphinid species. Overall, 41% of whistles were correctly classified using DFA and 51% were correctly classified using CART. Chapter five evaluates the effect of recording and analysis bandwidth on acoustic species identification. For the four species included in this chapter, an upper bandwidth limit of at least 24 kHz is necessary for an accurate representation of fundamental whistle contours. Finally, chapter six incorporates the classification techniques and bandwidth extensions discussed in chapters four and five into a software tool for real-time acoustic species identification in the fiel

    Common dolphin whistle response to experimental mid-frequency sonar

    Get PDF
    Oceanic delphinids that occur in and around Navy operational areas are regularly exposed to intense military sonar broadcast within the frequency range of their hearing. However, empirically measuring the impact of sonar on the behavior of highly social, free-ranging dolphins is challenging. Additionally, baseline variability or the frequency of vocal state-switching among social oceanic dolphins during undisturbed conditions is lacking, making it difficult to attribute changes in vocal behavior to anthropogenic disturbance. Using a network of drifting acoustic buoys in controlled exposure experiments, we investigated the effects of mid-frequency (3–4 kHz) active sonar (MFAS) on whistle production in short-beaked (Delphinus delphis delphis) and long-beaked common dolphins (Delphinus delphis bairdii) in southern California. Given the complexity of acoustic behavior exhibited by these group-living animals, we conducted our response analysis over varying temporal windows (10 min– 5 s) to describe both longer-term and instantaneous changes in sound production. We found that common dolphins exhibited acute and pronounced changes in whistle rate in the 5 s following exposure to simulated Navy MFAS. This response was sustained throughout sequential MFAS exposures within experiments simulating operational conditions, suggesting that dolphins may not habituate to this disturbance. These results indicate that common dolphins exhibit brief yet clearly detectable acoustic responses to MFAS. They also highlight how variable temporal analysis windows–tuned to key aspects of baseline vocal behavior as well as experimental parameters related to MFAS exposure–enable the detection of behavioral responses. We suggest future work with oceanic delphinids explore baseline vocal rates a-priori and use information on the rate of change in vocal behavior to inform the analysis time window over which behavioral responses are measured

    Common dolphin whistle response to experimental mid-frequency sonar

    No full text
    Oceanic delphinids that occur in and around Navy operational areas are regularly exposed to intense military sonar broadcast within the frequency range of their hearing. However, empirically measuring the impact of sonar on the behavior of highly social, free-ranging dolphins is challenging. Additionally, baseline variability or the frequency of vocal state-switching among social oceanic dolphins during undisturbed conditions is lacking, making it difficult to attribute changes in vocal behavior to anthropogenic disturbance. Using a network of drifting acoustic buoys in controlled exposure experiments, we investigated the effects of mid-frequency (3–4 kHz) active sonar (MFAS) on whistle production in short-beaked (Delphinus delphis delphis) and long-beaked common dolphins (Delphinus delphis bairdii) in southern California. Given the complexity of acoustic behavior exhibited by these group-living animals, we conducted our response analysis over varying temporal windows (10 min– 5 s) to describe both longer-term and instantaneous changes in sound production. We found that common dolphins exhibited acute and pronounced changes in whistle rate in the 5 s following exposure to simulated Navy MFAS. This response was sustained throughout sequential MFAS exposures within experiments simulating operational conditions, suggesting that dolphins may not habituate to this disturbance. These results indicate that common dolphins exhibit brief yet clearly detectable acoustic responses to MFAS. They also highlight how variable temporal analysis windows–tuned to key aspects of baseline vocal behavior as well as experimental parameters related to MFAS exposure–enable the detection of behavioral responses. We suggest future work with oceanic delphinids explore baseline vocal rates a-priori and use information on the rate of change in vocal behavior to inform the analysis time window over which behavioral responses are measured

    Abstracts From The 3Rd International Severe Asthma Forum (Isaf)

    No full text
    PubMe
    corecore