17 research outputs found
Cumulative dietary risk characterisation of pesticides that have chronic effects on the thyroid
A retrospective chronic cumulative risk assessment of dietary exposure to pesticide residues, supported by an uncertainty analysis based on expert knowledge elicitation, was conducted for two effects on the thyroid, hypothyroidism and parafollicular cell (Cācell) hypertrophy, hyperplasia and neoplasia. The pesticides considered in this assessment were identified and characterised in the scientific report on the establishment of cumulative assessment groups of pesticides for their effects on the thyroid. Cumulative exposure assessments were conducted through probabilistic modelling by EFSA and the Dutch National Institute for Public Health and the Environment (RIVM) using two different software tools and reported separately. These exposure assessments used monitoring data collected by Member States under their official pesticide monitoring programmes in 2014, 2015 and 2016 and individual consumption data from 10 populations of consumers from different countries and different age groups. This report completes the characterisation of cumulative risk, taking account of the available data and the uncertainties involved. For each of the 10 populations, it is concluded with varying degrees of certainty that cumulative exposure to pesticides that have the chronic effects on the thyroid mentioned above does not exceed the threshold for regulatory consideration established by risk managers
Guidance on tiered risk assessment for plant protection products for aquatic organisms in edge-of-field surface waters
EFSAās Panel on Plant Protection Products and their Residues (PPR) was tasked to revise the Guidance Document (GD) on Aquatic Ecotoxicology under Council Directive 91/414/EEC (SANCO/3268/2001 rev.4 (final), 17 October 2002). This Guidance of the PPR Panel is the first of three requested deliverables within this mandate. It has its focus on tiered acute and chronic effect assessment schemes with detailed guidance on tier 1 and higher tier effect assessments for aquatic organisms in edge-of-field surface waters and on proposals regarding how to link effects to exposure estimates. The exposure assessment methodology was not reviewed and it is assumed that the current FOCUS surface water exposure assessment methodology will continue to be used for exposure assessment at EU level. The current GD is intended to be used for authorisation of active substances at EU level as well as for plant protection products at Member State level. The effect assessment schemes in this GD allow for the derivation of regulatory acceptable concentrations (RACs) on the basis of two options: (1) the ecological threshold option (ETO), accepting negligible population effects only, and (2) the ecological recovery option (ERO), accepting some population-level effects if ecological recovery takes place within an acceptable time period. In the tiered effect assessment schemes, in principle, all tiers (1, 2 and 3) are able to address the ETO, while the model ecosystem approach (tier 3), under certain conditions, is able to also address the ERO. The GD provides the scientific background for the risk assessment to aquatic organisms in edge-of-field surface waters and is structured to give detailed guidance on all assessment steps. An executive summary joining all parts of the guidance and decision schemes in a concise way is provided and is intended to help applicants and regulatory authorities in day-to-day use
Implementation and verification of PBPK modelling codes of TCDD in rats and humans into Berkeley Madonna
The goal of the current work was to implement and verify previously published rat and human PBPK modelling codes for TCDD into Berkeley Madonna. The USāEPA has used these PBPK models in the reassessment of TCDD. A procurement contract has been set up to explore the possibilities to adequately run the models and reproduce previously published results. The implementation of the available codes in Berkeley Madonna was carried out at RIKILTāWUR under the framework agreement with RIVM. The results obtained with a newly coded PBPK model for TCDD in the rat in Berkeley Madonna revealed good reproducibility of previously reported graphs. A selection of key figures could be adequately simulated with the recoded models. Altogether it can be concluded that the PBPK codes for TCDD in rat and human can be adequately run in Berkeley Madonna
Impact of a proposed revision of the IESTI equation on the acute risk assessment conducted when setting maximum residue levels (MRLs) in the European Union (EU): A case study.
Proposals to update the methodology for the international estimated short-term intake (IESTI) equations were made during an international workshop held in Geneva in 2015. Changes to several parameters of the current four IESTI equations (cases 1, 2a, 2b, and 3) were proposed. In this study, the overall impact of these proposed changes on estimates of short-term exposure was studied using the large portion data available in the European Food Safety Authority PRIMo model and the residue data submitted in the framework of the European Maximum Residue Levels (MRL) review under Article 12 of Regulation (EC) No 396/2005. Evaluation of consumer exposure using the current and proposed equations resulted in substantial differences in the exposure estimates; however, there were no significant changes regarding the number of accepted MRLs. For the different IESTI cases, the median ratio of the new versus the current equation is 1.1 for case 1, 1.4 for case 2a, 0.75 for case 2b, and 1 for case 3. The impact, expressed as a shift in the IESTI distribution profile, indicated that the 95th percentile IESTI shifted from 50% of the acute reference dose (ARfD) with the current equations to 65% of the ARfD with the proposed equations. This IESTI increase resulted in the loss of 1.2% of the MRLs (37 out of 3110) tested within this study. At the same time, the proposed equations would have allowed 0.4% of the MRLs (14 out of 3110) that were rejected with the current equations to be accepted. The commodity groups that were most impacted by these modifications are solanacea (e.g., potato, eggplant), lettuces, pulses (dry), leafy brassica (e.g., kale, Chinese cabbage), and pome fruits. The active substances that were most affected were fluazifop-p-butyl, deltamethrin, and lambda-cyhalothrin
Risks of Plastic Debris : Unravelling Fact, Opinion, Perception, and Belief
Researcher and media alarms have caused plastic debris to be perceived as a major threat to humans and animals. However, although the waste of plastic in the environment is clearly undesirable for aesthetic and economic reasons, the actual environmental risks of different plastics and their associated chemicals remain largely unknown. Here we show how a systematic assessment of adverse outcome pathways based on ecologically relevant metrics for exposure and effect can bring risk assessment within reach. Results of such an assessment will help to respond to the current public worry in a balanced way and allow policy makers to take measures for scientifically sound reasons
Impact of proposed changes in IESTI equations for short-term dietary exposure to pesticides from Australian and Codex perspective.
In 2015 a scientific workshop was held in Geneva, where updating the four equations for estimating the short-term dietary exposure (International Estimated Short Term Intake, IESTI) to pesticides was suggested. The impact of these proposed changes on the exposure was studied by using residue data and large portion consumption data from Codex and Australia. For the Codex data, the exposure increased by a median factor of 2.5 per commodity when changing to the proposed IESTI equations. The increase in exposure was highest for bulked and blended food commodities (case 3 equations), followed by medium-sized food commodities (case 2a equations) and small- and large-sized food commodities (case 1 and case 2b equations). For the Australian data, out of 184 maximum residue limit (MRL) large portion combinations showing acute exposures below the acute reference dose (ARfD) with the current IESTI equations, 23 exceeded the ARfD with the proposed IESTI equations (12%). The percentage exceeding the ARfD was higher for the Australian MRL large portion combinations (12% of 184) than for those of Codex (1.3% of 8,366). However, the percentage MRL loss in the Australian dataset may not be representative of all pesticide MRLs since it concerns six pesticides only, specifically selected to elucidate the potential effects of the use of the proposed IESTI equations. For the Codex data, the increase in exposure using the proposed equations resulted in a small increased loss of 2.6% of the 1,110 MRLs estimated by the Joint FAO/WHO Meeting on Pesticide Residues (JMPR): 1.4% of the MRLs were already not acceptable with the current equations, 4.0% of the MRLs were not acceptable with the newly proposed equations. Our study revealed that case 3 commodities may be impacted more by the proposed changes than other commodities. This substantiates one of the conclusions of the Geneva workshop to gather information on bulking and blending practices in order to refine MRL setting and dietary risk assessment for case 3 commodities where possible
Risks of Plastic Debris: Unravelling Fact, Opinion, Perception, and Belief.
Researcher and media alarms have caused plastic debris to be perceived as a major threat to humans and animals. However, although the waste of plastic in the environment is clearly undesirable for aesthetic and economic reasons, the actual environmental risks of different plastics and their associated chemicals remain largely unknown. Here we show how a systematic assessment of adverse outcome pathways based on ecologically relevant metrics for exposure and effect can bring risk assessment within reach. Results of such an assessment will help to respond to the current public worry in a balanced way and allow policy makers to take measures for scientifically sound reasons
Setting the stage for the review of the international estimate of short-term intake (IESTI) equation.
In the framework of setting Maximum Residue Limits (MRLs) for pesticides, both chronic and acute health risks to consumers arising from the long-term and short-term dietary exposure to pesticide residues have to be assessed. The current internationally harmonized approach for assessing the acute dietary exposure is based on deterministic methods for calculating the IESTI (International Estimate of Short-Term Intake). Recently, it became apparent that the IESTI approach needs a revision in the light of new scientific and political aspects. The main reasons that require this review were the lack of an international harmonization of the methodology which implies trade barriers as well as difficulties in risk communication concerning the public trust in regulatory systems. The most recent milestone in the scientific debate on a possible revision of the IESTI equation was an international scientific workshop held in Geneva in September 2015. The main objectives of this meeting were the re-evaluation, and where possible, the international harmonization of the input parameters for the IESTI equations as well as the equations themselves. The main recommendations from the workshop were (i) to replace the highest residue and supervised trials median residue with the maximum residue limit (MRL), (ii) to use a standard variability factor of three, (iii) to derive the P97.5 large portion value from the distribution of consumption values of dietary surveys expressed as kg food/kg bw/d, and (iv) to remove the commodity unit weight from the equations. In addition, the application of conversion factors and processing factors was addressed. On the initiative of the (World Health Organization) WHO Collaborating Centre on Chemical Food Safety at the National Institute for Public Health and the Environment (RIVM), the Netherlands, an international working group with members from the French Agency for Food, Environmental and Occupational Health and Safety, France (ANSES), Australian Pesticides and Veterinary Medicines Authority, Australia (APVMA), German Federal Institute for Risk Assessment, Germany (BfR), Chemical Regulation Division, the United Kingdom (CRD), European Food Safety Authority (EFSA), and RIVM, the Netherlands was formed after the IESTI workshop to conduct a comprehensive impact assessment of the proposed changes of the IESTI equations