35 research outputs found

    FishSizer: Software solution for efficiently measuring larval fish size

    Get PDF
    Length and depth of fish larvae are part of the fundamental measurements in many marine ecology studies involving early fish life history. Until now, obtaining these measurements has required intensive manual labor and the risk of inter- and intra-observer variability. We developed an open-source software solution to semi-automate the measurement process and thereby reduce both time consumption and technical variability. Using contrast-based edge detection, the software segments images of a fish larva into “larva” and “background.” Length and depth are extracted from the “larva” segmentation while taking curvature of the larva into consideration. The graphical user interface optimizes workflow and ease of usage, thereby reducing time consumption for both training and analysis. The software allows for visual verification of all measurements. A comparison of measurement methods on a set of larva images showed that this software reduces measurement time by 66%–78% relative to commonly used software. Using this software instead of the commonly used manual approach has the potential to save researchers from many hours of monotonous work. No adjustment was necessary for 89% of the images regarding length (70% for depth). Hence, the only workload on most images was the visual inspection. As the visual inspection and manual dimension extraction works in the same way as currently used software, we expect no loss in accuracy.publishedVersio

    The era of reference genomes in conservation genomics

    Full text link
    Progress in genome sequencing now enables the large-scale generation of reference genomes. Various international initiatives aim to generate reference genomes representing global biodiversity. These genomes provide unique insights into genomic diversity and architecture, thereby enabling comprehensive analyses of population and functional genomics, and are expected to revolutionize conservation genomics

    The era of reference genomes in conservation genomics

    Get PDF
    Progress in genome sequencing now enables the large-scale generation of reference genomes. Various international initiatives aim to generate reference genomes representing global biodiversity. These genomes provide unique insights into genomic diversity and architecture, thereby enabling comprehensive analyses of population and functional genomics, and are expected to revolutionize conservation genomics

    The era of reference genomes in conservation genomics

    Get PDF
    Progress in genome sequencing now enables the large-scale generation of reference genomes. Various international initiatives aim to generate reference genomes representing global biodiversity. These genomes provide unique insights into genomic diversity and architecture, thereby enabling comprehensive analyses of population and functional genomics, and are expected to revolutionize conservation genomics

    The era of reference genomes in conservation genomics

    Get PDF
    info:eu-repo/semantics/publishedVersio

    Pathways towards a sustainable future envisioned by early-career conservation researchers

    Get PDF
    Scientists have warned decision-makers about the severe consequences of the global environmental crisis since the 1970s. Yet ecological degradation continues and little has been done to address climate change. We investigated early-career conservation researchers' (ECR) perspectives on, and prioritization of, actions furthering sustainability. We conducted a survey (n = 67) and an interactive workshop (n = 35) for ECR attendees of the 5th European Congress of Conservation Biology (2018). Building on these data and discussions, we identified ongoing and forthcoming advances in conservation science. These include increased transdisciplinarity, science communication, advocacy in conservation, and adoption of a transformation-oriented social–ecological systems approach to research. The respondents and participants had diverse perspectives on how to achieve sustainability. Reformist actions were emphasized as paving the way for more radical changes in the economic system and societal values linked to the environment and inequality. Our findings suggest that achieving sustainability requires a strategy that (1) incorporates the multiplicity of people's views, (2) places a greater value on nature, and (3) encourages systemic transformation across political, social, educational, and economic realms on multiple levels. We introduce a framework for ECRs to inspire their research and practice within conservation science to achieve real change in protecting biological diversity.</p

    How genomics can help biodiversity conservation

    Get PDF
    The availability of public genomic resources can greatly assist biodiversity assessment, conservation, and restoration efforts by providing evidence for scientifically informed management decisions. Here we survey the main approaches and applications in biodiversity and conservation genomics, considering practical factors, such as cost, time, prerequisite skills, and current shortcomings of applications. Most approaches perform best in combination with reference genomes from the target species or closely related species. We review case studies to illustrate how reference genomes can facilitate biodiversity research and conservation across the tree of life. We conclude that the time is ripe to view reference genomes as fundamental resources and to integrate their use as a best practice in conservation genomics.info:eu-repo/semantics/publishedVersio

    How genomics can help biodiversity conservation

    Get PDF
    The availability of public genomic resources can greatly assist biodiversity assessment, conservation, and restoration efforts by providing evidence for scientifically informed management decisions. Here we survey the main approaches and applications in biodiversity and conservation genomics, considering practical factors, such as cost, time, prerequisite skills, and current shortcomings of applications. Most approaches perform best in combination with reference genomes from the target species or closely related species. We review case studies to illustrate how reference genomes can facilitate biodiversity research and conservation across the tree of life. We conclude that the time is ripe to view reference genomes as fundamental resources and to integrate their use as a best practice in conservation genomics

    Genetic variability in reaction norms in fishes

    No full text
    The ability of populations to adapt to environmental change and the spatial scale at which this adaptation occurs are fundamentally important issues in evolutionary biology, and ones that may benefit greatly from the study of genetic variability in reaction norms, which represent the plasticity of phenotypic traits across an environmental gradient. Therefore variable reaction norms can reflect genetic differences in the ability of individuals, families, populations, and species to respond to natural and anthropogenic environmental change. Fishes are ideal organisms in which to study plasticity because of their remarkable intraspecific morphological, physiological, behavioural, and life history variation. Here, we review studies demonstrating genetic variability in reaction norms in fishes. Genetic variability in plasticity among full- and half-sib families suggests potential for some populations to develop an adaptive norm of reaction (recalling that plasticity need not be adaptive). Reaction norm variability among populations suggests that adaptive genetic divergence can occur rapidly when selection pressures are strong and that the spatial scale of adaptation is much smaller than previously believed for some species with high dispersal capabilities. These studies demonstrate the potential of using reaction norms to study the evolution of novel phenotypes and the influence of temporal environmental variability and gene flow on the evolution of phenotypic plasticity, which can then be used to predict how populations will respond to directional environmental change. To promote future research into genetic variability in reaction norms, we propose questions that would benefit from such an approach and discuss some important considerations for designing experiments to investigate questions related to genetic variation in plasticity and phenotypic evolution

    Genetic variation in life-history trait plasticity between Atlantic cod (Gadus morhua) populations exposed to contrasting thermal regimes

    No full text
    We employed common-garden experiments to test for genetic variation in larval life-history trait responses to temperature between two populations of Atlantic cod (Gadus morhua L., 1758) that naturally experience contrasting thermal environments during early life due to spatial and temporal differences in spawning. Southern Gulf of St. Lawrence cod larvae experienced faster growth in warmer water and low, uniform survival across all experimental temperatures (3°C, 7°C, 11°C), consistent with previous studies on this spring-spawning population. In contrast, larvae from fall-spawning Southwestern Scotian Shelf cod collected near Sambro, Nova Scotia, lacked plasticity for growth but experienced much lower survival at higher temperatures. Phenotypes that are positively associated with fitness were observed at temperatures closest to those experienced in the wild, consistent with the hypothesis that these populations are adapted to local thermal regimes. The lack of growth plasticity observed in Sambro cod might be due to costly maintenance of plasticity in stable environments or energy savings at cold temperatures. However, additional experiments need to be conducted on Sambro cod and other fall-spawning marine fishes to determine to what extent responses to projected changes in climate will differ among populations.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author
    corecore