6,976 research outputs found
Chromosome inheritance and reproductive barriers in backcrosses between two hybridizing Viviparus snail species
Hybridization must be followed by repeated backcrossing of the subsequent hybrid generations to the parental species for gene exchange between species to occur. Due to meiotic failures, first-generation hybrids of some species produce unreduced gametes. Their progeny in backcrosses with a diploid parental species are polyploid and functionally sterile. Polyploidy of the backcross generation may therefore act as an instantaneous barrier to gene flow between hybrids and the parental species. Here we determined chromosome inheritance in backcrosses of two hybridizing freshwater caenogastropod snail species to assess whether gene introgression is inhibited in the first backcross generation. Viviparus ater and V. contectus intermate in nature and produce viable F1 hybrid progeny, although offspring sex ratio is strongly male biased. Despite the different chromosome numbers of the two parental species (V. ater, 2n = 18; V. contectus, 2n = 14), the F1 hybrids are able to reproduce. Allozyme data from natural populations are compatible with gene exchange between the two species, although there is also evidence suggesting that some alleles may be shared because of common ancestry. Our study revealed that all viable backcross progeny were homoploid as they inherited between seven and nine chromosomes from the hybrid father. The siring success of the karyotypically different hybrid sperm was skewed against one sperm karyotype depending on the non-hybrid mother in the cross. In backcross broods of V. ater females, the observed distribution of the karyotypes conformed with an assumption of random segregation of two unpaired chromosomes at meiosis in hybrid males. In contrast, when backcrossing hybrid males to V. contectus females, post-copulatory processes ultimately determined the karyotype distribution of the backcross progeny. Homoploidy of all backcross progeny together with the presence of sperm and embryos in their gonads makes gene exchange between the two parental species through hybridization possibl
The Karyotype of the Yellow Dung Fly, Scathophaga stercoraria, a Model Organism in Studies of Sexual Selection
Knowledge of karyotypical characteristics of a species is essential for understanding how sexually selected and sexually antagonistic traits evolve. The yellow dung fly Scathophaga stercoraria L. (Diptera: Scathophagidae) is an established model system for studies of sexual selection and sexual conflict, but karyotypical data are lacking to date. Here, the karyotype of S. stercoraria was characterized using conventional Giemsa-staining and C-banding techniques. The diploid chromosome set consists of 6 pairs of bi-armed meta- or submetacentric chromosomes. The sex chromosomes are the largest chromosomes and constitute 30% of the total length of the diploid set in females and about 25% in males. Males are the heterogametic sex, and the length of the Y chromosome is about three-quarters of that of the X chromosome. C-banding revealed that both sex chromosomes are largely heterochromatic. In contrast, in the five autosome pairs, heterochromatin is limited to narrow bands in the centromeric regions. This karyotypic information will help provide a more profound understanding of the inheritance of phenotypic variation in reproductive traits and the chromosomal locations of underlying genes
Dose de-escalation of intrapleural tissue plasminogen activator therapy for pleural infection. The alteplase dose assessment for Pleural infection Therapy project
Rationale: Intrapleural therapy with a combination of tissue plasminogen activator (tPA) 10 mg and DNase 5 mg administered twice daily has been shown in randomized and open-label studies to successfully manage over 90% of patients with pleural infection without surgery. Potential bleeding risks associated with intrapleural tPA and its costs remain important concerns. The aim of the ongoing Alteplase Dose Assessment for Pleural infection Therapy (ADAPT) project is to investigate the efficacy and safety of dose de-escalation for intrapleural tPA. The first of several planned studies is presented here.
Objectives: To evaluate the efficacy and safety of a reduced starting dose regimen of 5 mg of tPA with 5 mg of DNase administered intrapleurally for pleural infection.
Methods: Consecutive patients with pleural infection at four participating centers in Australia, the United Kingdom, and New Zealand were included in this observational, open-label study. Treatment was initiated with tPA 5 mg and DNase 5 mg twice daily. Subsequent dose escalation was permitted at the discretion of the attending physician. Data relating to treatment success, radiological and systemic inflammatory changes (blood C-reactive protein), volume of fluid drained, length of hospital stay, and treatment complications were extracted retrospectively from the medical records.
Results: We evaluated 61 patients (41 males; age, 57 ± 16 yr). Most patients (n = 58 [93.4%]) were successfully treated without requiring surgery for pleural infection. Treatment success was corroborated by clearance of pleural opacities visualized by chest radiography (from 42% [interquartile range, 22–58] to 16% [8–31] of hemithorax; P < 0.001), increase in pleural fluid drainage (from 175 ml in the 24 h preceding treatment to 2,025 ml [interquartile range, 1,247–2,984] over 72 h of therapy; P < 0.05) and a reduction in blood C-reactive protein (P < 0.05). Seven patients (11.5%) had dose escalation of tPA to 10 mg. Three patients underwent surgery. Three patients (4.9%) received blood transfusions for gradual pleural blood loss; none were hemodynamically compromised. Pain requiring escalation of analgesia affected 36% of patients; none required cessation of therapy.
Conclusions: These pilot data suggest that a starting dose of 5 mg of tPA administered intrapleurally twice daily in combination with 5 mg of DNase for the treatment of pl
Environmental quality alters female costs and benefits of evolving under enforced monogamy
Background Currently many habitats suffer from quality loss due to environmental change. As a consequence, evolutionary trajectories might shift due to environmental effects and potentially increase extinction risk of resident populations. Nevertheless, environmental variation has rarely been incorporated in studies of sexual selection and sexual conflict, although local environments and individuals’ condition undoubtedly influence costs and benefits. Here, we utilise polyandrous and monogamous selection lines of flour beetles, which evolved in presence or absence of sexual selection for 39 generations. We specifically investigated effects of low vs. standard food quality (i.e. stressful vs. benign environments) on reproductive success of cross pairs between beetles from the contrasting female and male selection histories to assess gender effects driving fitness. Results We found a clear interaction of food quality, male selection history and female selection history. Monogamous females generally performed more poorly than polyandrous counterparts, but reproductive success was shaped by selection history of their mates and environmental quality. When monogamous females were paired with polyandrous males in the standard benign environment, females seemed to incur costs, possibly due to sexual conflict. In contrast, in the novel stressful environment, monogamous females profited from mating with polyandrous males, indicating benefits of sexual selection outweigh costs. Conclusions Our findings suggest that costs and benefits of sexually selected adaptations in both sexes can be profoundly altered by environmental quality. With regard to understanding possible impacts of environmental change, our results further show that the ecology of mating systems and associated selection pressures should be considered in greater detail
Experimental evolution reveals that sperm competition intensity selects for longer, more costly sperm
It is the differences between sperm and eggs that fundamentally underpin the differences between the sexes within reproduction. For males, it is theorized that widespread sperm competition leads to selection for investment in sperm numbers, achieved by minimizing sperm size within limited resources for spermatogenesis in the testis. Here, we empirically examine how sperm competition shapes sperm size, after more than 77 generations of experimental selection of replicate lines under either high or low sperm competition intensities in the promiscuous flour beetle Tribolium castaneum. After this experimental evolution, populations had diverged significantly in their sperm competitiveness, with sperm in ejaculates from males evolving under high sperm competition intensities gaining 20% greater paternity than sperm in ejaculates from males that had evolved under low sperm competition intensity. Males did not change their relative investment into sperm production following this experimental evolution, showing no difference in testis sizes between high and low intensity regimes. However, the more competitive males from high sperm competition intensity regimes had evolved significantly longer sperm and, across six independently selected lines, there was a significant association between the degree of divergence in sperm length and average sperm competitiveness. To determine whether such sperm elongation is costly, we used dietary restriction experiments, and revealed that protein-restricted males produced significantly shorter sperm. Our findings therefore demonstrate that sperm competition intensity can exert positive directional selection on sperm size, despite this being a costly reproductive trait
Experimental evolution with an insect model reveals that male homosexual behaviour occurs due to inaccurate mate choice
The existence of widespread male same-sex sexual behaviour (SSB) is puzzling: why does evolution allow costly homosexual activity to exist, when reproductive fitness is primarily achieved through heterosexual matings? Here, we used experimental evolution to understand why SSB occurs in the flour beetle Tribolium castaneum. By varying the adult operational sex ratio across 82–106 generations, we created divergent evolutionary regimes that selected for or against SSB depending upon its function. Male-biased (90:10 M:F) regimes generated strong selection on males from intrasexual competition, and demanded improved ability to locate and identify female mates. By contrast, Female-biased regimes (10:90 M:F) generated weak male–male competition, and relaxed selection on mate-searching abilities in males. If male SSB functions through sexually selected male–male competition, it should be more evident within Male-biased regimes, where reproductive competition is nine times greater, than in the Female-biased regimes. By contrast, if SSB exists due to inaccurate mate choice, it should be reduced in Male-biased regimes, where males experience stronger selection for improved mate finding and discrimination abilities than in the Female-biased regime, where most potential mating targets are female. Following these divergent evolutionary regimes, we measured male engagement in SSB through choice experiments simultaneously presenting female and male mating targets. Males from both regimes showed similar overall levels of mating activity. However, there were significant differences in levels of SSB between the two regimes: males that evolved through male-biased operational sex ratios located, mounted and mated more frequently with the female targets. By contrast, males from female-biased selection histories mated less frequently with females, exhibiting almost random choice between male and female targets in their first mating attempt. Following experimental evolution, we therefore conclude that SSB does not function through sexually selected male–male competition, but instead occurs because males fail to perfectly discriminate females as mates
Effect of incoherent scattering on shot noise correlations in the quantum Hall regime
We investigate the effect of incoherent scattering in a Hanbury Brown and
Twiss situation with electrons in edge states of a three-terminal conductor
submitted to a strong perpendicular magnetic field. The modelization of
incoherent scattering is performed by introducing an additional voltage probe
through which the current is kept equal to zero which causes voltage
fluctuations at this probe. It is shown that inelastic scattering can lead in
this framework to positive correlations, whereas correlations remain always
negative for quasi-elastic scattering.Comment: 5 pages latex, 5 eps figure
Reproductive Consequences of Population Divergence through Sexual Conflict
AbstractSexual-selection research increasingly focuses on reproductive conflicts between the sexes [1–4]. Sexual conflict, divergent evolutionary interests of males and females [5], can cause rapid antagonistic coevolution of reproductive traits [6] and is a potentially powerful speciation engine [7–11]. This idea has theoretical and comparative support [10–12] but remains controversial [13–14]. Recent experimental evidence from Sepsis cynipsea indicates that populations with greater sexual conflict diverged more quickly; females were less likely to mate with males from other populations when flies had evolved under high levels of sexual conflict [15]. The consequences of this divergence have not been addressed, so here we assess two female fitness surrogates after 44 generations of evolving (and diverging) under three different levels of sexual conflict. Longevity after copulation was negatively associated with the degree of sexual conflict under which flies evolved, and housing females with males also reduced female longevity. Female lifetime reproductive success (LRS) also tended to decrease with increasing conflict. However, there was evidence of either sexual-selection fitness benefits at intermediate levels of sexual selection and conflict or inbreeding depression in the smallest populations (those with the lowest levels of conflict). Nevertheless, the results indicate that there can be a fitness load associated with sexual selection [2] and support claims that sexual conflict can lead to reproductive isolation [7–11, 15]
A Population of Dust-rich Quasars at z ~ 1.5
We report Herschel SPIRE (250, 350, and 500 μm) detections of 32 quasars with redshifts 0.5 ≤z < 3.6 from the Herschel Multi-tiered Extragalactic Survey (HerMES). These sources are from a MIPS 24 μm flux-limited sample of 326 quasars in the Lockman Hole Field. The extensive multi-wavelength data available in the field permit construction of the rest-frame spectral energy distributions (SEDs) from ultraviolet to the mid-infrared for all sources, and to the far-infrared (FIR) for the 32 objects. Most quasars with Herschel FIR detections show dust temperatures in the range of 25-60 K, with a mean of 34 K. The FIR luminosities range from 10^(11.3) to 10^(13.5) L_☉, qualifying most of their hosts as ultra- or hyper-luminous infrared galaxies. These FIR-detected quasars may represent a dust-rich population, but with lower redshifts and fainter luminosities than quasars observed at ~1 mm. However, their FIR properties cannot be predicted from shorter wavelengths (0.3-20 μm, rest frame), and the bolometric luminosities derived using the 5100 Å index may be underestimated for these FIR-detected quasars. Regardless of redshift, we observed a decline in the relative strength of FIR luminosities for quasars with higher near-infrared luminosities
- …