322 research outputs found
The Synthesis, Resolution and Configuration of Beta-hydroxyvaline
Synthesis, resolution, and configuration of alpha-hydroxyvalin
Optical Resolution and Configuration of Trans-2,3-epoxybutyric Acid
Optical resolution of epoxy derivative of butyric acid with brucine and configuration determination by treatment with ammoni
Recommended from our members
Understanding the protective effects of wine components and their metabolites in the brain function
Moderate wine consumption has been suggested to exert a positive effect in prevention of neurodegenerative process and cognitive impairment. With the ultimate aim of achieving a better understanding of the molecular mechanisms behind this benefit, we have investigated the role of certain wine- derived phenolic metabolites and aroma compounds in the MAPK cascade (including ERK1/2, p38), one of the routes directly related to inflammation in neuronal cells. Some of the tested phenolic compounds, especially in the case of 3,4-dihydroxyphenylacetic acid, showed a significant neuroprotective effect against SIN-1-induced neuronal death. Regarding their effect over MAPK phosphorylation, inmunoblotting technique revealed a beneficial and significant decrease on the phosphorylation of p38 and ERK1/2 kinases after incubation with wine constituents. In addition, activity of caspase3-like protease, an executor of neuronal apoptosis and a downstream signal of MAPK, was significantly diminished by 3-(3-hydroxyphenyl) propionic acid and linalool, counterbalancing the increase produced by SIN-1. Altogether, these results suggest that wine aroma, phenolic compounds and their gut metabolites could exert neuroprotective actions by modulating MAPK signalling and caspase-3 proteases activation, which are known to play a key role in oxidative/ nitrosative stress-induced response
Recommended from our members
Neuroprotective effects of selected microbial-derived phenolic metabolites and aroma compounds from wine in human SH-SY5Y neuroblastoma cells and their putative mechanisms of action
Moderate wine consumption has shown the potential to delay the onset of neurodegenerative diseases. This study investigates the molecular mechanisms underlying the protective effects of wine-derived phenolic and aroma compounds in a neuroinflammation model based on SIN-1 stress-induced injury in SH-SY5Y neuroblastoma cells. Cell pretreatment with microbial metabolites found in blood after wine consumption, 3,4-dihydroxyphenylacetic (3,4-DHPA), 3-hydroxyphenylacetic acids and salicylic β-d-O-glucuronide, at physiologically concentrations (0.1-10 μM) resulted in increased cell viability versus SIN-1 control group (p < 0.05). Results also showed significant decreases in mitogen-activated protein kinase (MAPK) p38 and ERK1/2 activation as well as in downstream pro-apoptotic caspase-3 activity by some of the studied compounds. Moreover, pretreatment with p38, MEK, and ERK1/2-specific inhibitors, which have a phenolic-like structure, also resulted in an increase on cell survival and a reduction on caspase-3 activity levels. Overall, these results contribute with new evidences related to the neuroprotective actions of wine, pointing out that wine-derived human metabolites and aroma compounds may be effective at protecting neuroblastoma cells from nitrosative stress injury by inhibiting neuronal MAPK p38 and ERK1/2, as well as downstream caspase 3 activity
Advanced Biopolymer-Based Nanocomposites and Hybrid Materials
The exploitation of naturally occurring polymers to engineer advanced nanocomposites and hybrid materials is the focus of increasing scientific activity, explained by growing environmental concerns and interest in the peculiar features and multiple functionalities of these macromolecules. Natural polymers, such as polysaccharides and proteins, present a remarkable potential for the design of all kinds of materials for application in a multitude of domains. This Special Issue collected the work of scientists on the current developments in the field of multifunctional biopolymer-based nanocomposites and hybrid materials with a particular emphasis on their production methodologies, properties, and prominent applications. Thus, materials related to bio-based nanocomposites and hybrid materials manufactured with different partners, namely natural polymers, bioactive compounds, and inorganic nanoparticles, are reported in the Special Issue Advanced Biopolymer-Based Nanocomposites and Hybrid Materials
ADAMTS-1: A metalloproteinase-disintegrin essential for normal growth, fertility, and organ morphology and function
金沢大学医薬保健研究域医学系A disintegrin and metalloproteinase (ADAM) represents a protein family possessing both metalloproteinase and disintegrin domains. ADAMTS-1, an ADAM family member cloned from cachexigenic colon adenocarcinoma, is unusual in that it contains thrombospondin type I motifs and anchors to the extracellular matrix. To elucidate the biological role of ADAMTS-1, we developed ADAMTS-1-null mice by gene targeting. Targeted disruption of the mouse ADAMTS-1 gene resulted in growth retardation with adipose tissue malformation. Impaired female fertilization accompanied by histological changes in the uterus and ovaries also resulted. Furthermore, ADAMTS-1(-/-) mice demonstrated enlarged renal calices with fibrotic changes from the ureteropelvic junction through the ureter, and abnormal adrenal medullary architecture without capillary formation. ADAMTS-1 thus appears necessary for normal growth, fertility, and organ morphology and function. Moreover, the resemblance of the renal phenotype to human ureteropelvic junction obstruction may provide a clue to the pathogenesis of this common congenital disease
Up-regulation of multiple proteins and biological processes during maxillary expansion in rats
<p>Abstract</p> <p>Background</p> <p>Maxillary expansion (ME) is a common practice in orthodontics that aims to increase the constricted maxillary arch width. Relapse often occurs, however, and better treatment strategies are needed. In order to develop a more effective method, this study was designed to further examine the process of tissue remodeling during ME, to identify the changes in expression of several proteins of interest, and to clarify the molecular mechanism responsible for tissue remodeling.</p> <p>Methods</p> <p>Male Wistar rats were randomly divided into control and ME groups. The rats were euthanized at various intervals over 11 days, and the dissected palates were prepared for histological examination. The structure of the midpalatal sutures changed little during the first three days. Proteins from samples in the ground midpalatal tissues obtained on the third day were subjected to two-dimensional polyacrylamide gel electrophoresis (2-DE) and matrix assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis. Validation of protein expression was performed by Western blot analyses.</p> <p>Results</p> <p>From day 5, chondrocytes in the inner layer of suture cartilage and osteoblasts at the end of the suture cartilage began to proliferate, and the skeletal matrix increased later adjacent to the cartilage in the ME group. Comparative proteomic analysis showed increases in 22 protein spots present in the ME group. The changes in three proteins closely related to osteogenesis (parathyroid hormone, osteoprotegerin and vimentin) were confirmed by Western blotting.</p> <p>Conclusion</p> <p>Many proteins are over-expressed during ME, and they may play an important role in the remodeling process.</p
- …