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Abstract
Summary:  The   molecular   functions   of   TMEM132   genes   remain   poorly   understood   and   under
investigated despite their mutations associated with nonsyndromic hearing loss, panic disorder and
cancer. Here we show the full domain architecture of human TMEM132 family proteins solved using
indepth sequence and structural analysis. We reveal them to be five previously unappreciated cell
adhesion molecules whose domain architecture has an early holozoan origin prior to the emergence
of  choanoflagellates  and metazoa.  The extracellular  portions  of  TMEM132 proteins  contain   five
conserved   domains   including   three   tandem   immunoglobulin   domains,   and   a   cohesin   domain
homologue,   the   first   such   domain   found   in   animals.   These   findings   strongly   predict   a   cellular
adhesion function for TMEM132 family,  connecting the extracellular medium with  the  intracellular
actin cytoskeleton.
Contact: Luis.SanchezPulido@igmm.ed.ac.uk 
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction 
Many  genes  remain  experimentally  under-investigated  not
because they are functionally less important but because their

discovery  came  relatively  late  (Pandey et  al., 2014).  Our
ignorance  of  aspects  of  basic  biology  and  disease  thus  is

perpetuated by the serendipitous order by which genes were
first  characterised.  The  need  to  experimentally  determine

proteins’  normal  molecular  functions,  and  their  molecular
dysfunction in disease, becomes more critical when sequence

variants  within  functionally  enigmatic  genes  are  robustly
associated with Mendelian or complex disease, or with cancer

progression.  Determining  the  molecular  functions  of  such
poorly-characterised genes is all the more difficult when their

protein sequences lack recognisable domains, because these
otherwise  can  reliably  provide  structural  and  functional

information  through  homology-based  inference.  Here,  we
shed much light on the previously-unknown domain structure

and  functions  of  the  5  proteins  of  the  human  TMEM132
family (TMEM132A, B, C, D and E).

These are genes in which variants are enriched for individuals
with hearing loss,  panic  disorder or  cancer. A homozygous

missense mutation in human  TMEM132E (Arg420Gln) was
confirmed using a zebrafish model to cause autosomal-reces-

sive nonsyndromic hearing loss (Li  et al.,  2015).  Common
variants within the  TMEM132E gene are associated with in-

somnia symptoms (Lane et al., 2017); common and rare vari-
ants near TMEM132D gene are robustly associated with panic

disorder (Erhardt  et al., 2011; Erhardt  et al., 2012; Quast  et
al.,  2012; Inoue  et al.,  2015; Howe  et al.,  2016; Shimada-

Sugimoto  et  al.,  2016;  Wang  et  al.,  2016;  Hodgson  et  al.,
2016); and variants near TMEM132B are associated with ex-

cessive daytime sleepiness (Lane et al., 2017). In healthy in-
dividuals, some of the  TMEM132D non-coding variants ex-

hibit higher anxiety scores and larger volumetric estimates of

. Published by Oxford University Press. 
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the amygdala and hippocampus, key neural structures associ-
ated with fear and anxiety (Haaker et al., 2014). Furthermore,

in cattle the TMEM132D locus appears to have undergone a
selective sweep during domestication (Qanbari  et al., 2014),

and in the mouse, anterior cingulate cortex TMEM132D ex-
pression correlates with anxiety-related behaviour (Erhardt et

al.,  2011).  Finally, mutations  in  TMEM132D are  unusually
frequent in small-cell lung cancer (Peifer et al., 2012; Rudin

et al., 2012; Iwakawa  et al., 2015) and in pancreatic cancer
(Forbes et al., 2015). Disease mutations near, or functions of,

TMEM132A or  C have  yet  to  be  identified,  although
TMEM132A is thought to promote neuronal cell survival by

regulating  stress-related  genes  (Oh-hashi  et  al.,  2003;  Oh-
hashi  et  al.,  2006;  Oh-hashi  et  al.,  2010;  Oh-hashi  et  al.,

2012; Oh-hashi et al., 2015). Functions of the single fruit fly
(CG14446) or nematode (Y71H2AM.10) orthologous genes

are yet to be described. 
All five human paralogues encode cell-surface molecules ex-

pressed in the brain (Nomoto  et al., 2003; Oh-hashi,  2010;
Walser et al., 2011; Uhlen et al., 2010) whose amino acid se-

quences contain no distinguishable features other than their
N-terminal  signal  peptides  and  C-terminal  proximal  trans-

membrane sequences (Nomoto  et al., 2003; Oh-hashi  et al.,
2010;  Oh-hashi  et  al.,  2012),  with  intracellular  C-terminal

Ser/Thr phosphatase-1 (PP1) docking (Hendrickx et al., 2009;
Heroes  et al., 2012) and WIRS (WAVE regulatory complex

interacting receptor sequence) cytoplasmic motifs (Figure 1
and Supplemental Figure S1) (Chen et al., 2014). The latter is

consistent with the reported co-localization of TMEM132D
with actin filaments (Walser et al., 2011). 

Cell-cell junctions in the central nervous system (CNS) are
maintained by a variety of transmembrane proteins that signal

and  physically  link  between  the  cytoskeletons  of  adjacent
cells.  Many  such  proteins  (e.g.  CNTN,  LRIG,  NCAM,

SEMA3  and  SIGLEC  families)  contain  one  or  more
immunoglobulin  (IG)  superfamily  domains  (Rougon  and

Hobert,  2003).  Here  we  identify  TMEM132  molecules  as
novel IG domain containing proteins of the CNS.

2 Results and discussion

2.1 Protein sequence analysis: three tandem 
immunoglobulin domains.

We  initiated  our  analyses  by  performing  a  JackHMMER
iterative search (Finn  et al., 2015) starting from the human

TMEM132A protein sequence of the UniRef50 database (Wu
et al., 2006). Whilst characterising the TMEM132 family we

identified full-length homologous proteins across essentially
all  of  the  animal  kingdom,  including  nematodes

(Caenorhabditis  elegans)  and  hexapods  (Drosophila
melanogaster). As input for our analysis we used a full-length

multiple  sequence  alignment  generated  with  T-Coffee
(Notredame et al., 2000). Using extensive profile-to-sequence

and profile-to-profile comparison analyses (Finn et al. 2015;
Söding  et  al. 2005)  we  identified  a  repeated  pattern  of

conserved amino-acids in the region lying between positions
400  and  767  for  human  TMEM132A,  corresponding

approximately  to  the  conserved  region  used  to  define  the

Fig. 1.  Domain architecture and common features  in  the TMEM132

family. Schematic  representation  of  conserved  domains  present  in

TMEM132 family members:  a  conserved region (CR; shown in red; see

Supplemental  Figure  S6))  precedes  a  cohesin  domain  (blue;  see

Supplemental  Figure  S5),  and  three  adjacent  BIG  domains  (orange;

(Supplemental  Figures  S3  and  S4).  The  predicted  intradomain  and

interdomain disulphide bridges of these BIG domains are indicated in the

right panel (magenta and violet lines, respectively). The seven beta-strands,

forming part of the immunoglobulin-like core of BIG domains, are labelled

a-g following an established convention (Bork et al., 1994) (Supplemental

Figures  S7).  Evolutionarily  conserved  TMEM132  intracellular  motifs

putatively  related  with  the  control  of  actin  cytoskeletal  dynamics  are:  a

putative  serine  phosphorylation  motif  (SP),  a  phosphatase-1  (PP1)

interaction motif (RVxF) (Hendrickx et al., 2009; Heroes et al., 2012), and a

WIRS  (WAVE  regulatory  complex  interacting  receptor  sequence)

cytoplasmic motif (Chen et al., 2014).

family  in  Pfam  (Family  TMEM132,  accession:  PF16070)

(Punta et al., 2012). This region is conserved among animals
and some premetazoan proteins that are additionally rich in

cadherin  domains  (Supplemental  Figure  S2)  (Abedin  and
King,  2008;  Nichols  et  al.,  2012).  Profile-versus-sequence

and  profile-versus-profile  comparisons  of  this  conserved
repeated  pattern  allowed  the  identification  of  three

consecutive  repeated  regions,  each  of  which independently
yielded  statistically  significant  E-values  of  sequence

similarity with the same fold, the bacterial immunoglobulin-
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like  (BIG)  domain  (Mei  et  al.,  2015;  Ptak  et  al.,  2014).
HHpred searches against the PDB70 profile database. (Söding

et  al. 2005)  using  TMEM132 repeats  1,  2  and  3  as  input
(corresponding to amino acids 400-491,  495-630, and 641-

767 of human TMEM132A) detected the BIG domain from
Leptospira interrogans (PDB ID: 2mh4), for example, with

E-values of 0.031, 0.018, and 0.022, respectively. Moreover
in all three HHpred results, in support of the first match, the

next  most  statistically  significant  matches  corresponded  to
additional  members  of  the  immunoglobulin  superfamily

(Supplemental  Figures  S3  and  S4).  The  PDB70  database
contains  profile  hidden  Markov  models  (HMMs)  for

representative  sequences,  clustered  to  70%  maximum
pairwise sequence identity to reduce redundancy, drawn from

the PDB database  (Söding et al. 2005).
BIG domains are widely distributed among bacteria, archaea,

and  eukaryotes  (Pfam  family  Big_2,  accession:  PF02368)
(Punta et al., 2012). This domain adopts a beta-sandwich fold

composed of nine strands organised in three sheets. Two of
these sheets (composed of seven strands) contribute the im-

munoglobulin-like core of BIG domains. These seven strands
are labelled “a” to “g” in figure 1 and Supplemental Figure

S3, following an established convention in the immunoglobu-
lin fold (Bork et al., 1994). BIG domains have been described

with diverse functions, usually relating to matrix, protein-lig-
and, or protein-protein interactions and are mainly extracellu-

lar (Mei et al., 2015; Ptak et al., 2014).
Close  3D proximity  and  evolutionary  conservation  of  four

cysteines allow us to identify two putative disulphide bridges,
one that is internal to BIG1 and another that is inter-domain

between BIG2 and BIG3 domains (Figure 1; Supplemental
Figures S3, S4, and S7).  Disulphide bridges are commonly

found in different IG folds and contribute to their structural
stability (Bork et al., 1994).

2.2 First animal Cohesin domain.

Identification of the three tandem BIG domains, then allowed

our analyses to be focused on the TMEM132 family N-termi-
nal  region  taking  advantage  of  iterative  profile-versus-se-

quence searches against the UniRef50 protein sequence data-
base (Wu et al., 2006). These resulted in the identification of

two additional domains, each of which is present not only in
animals but also among more diverse eukaryotes, including

members  of  the  Coherin  family  in  choanoflagellates  and
sponges  (Nichols  et  al.,  2012).  The  domain  preceding  the

BIG domains was discovered as the first cohesin homology
domain  in  vertebrates  (HHpred E-value  < 5x10-3)  (Supple-

mental  Figure  S5).  Cohesin  domains  are  found  widely  in
prokaryotes but, in eukaryotes, were previously thought to be

restricted to choanoflagellate and sponge proteins (Pfam ac-
cession: PF00963) (Peer et al., 2009; Abedin and King, 2008;

Nichols  et al., 2012). These are not to be confused with the
cohesin complex that regulates the separation of sister chro-

matids.  Rather, cohesin domains are highly specialised pro-
tein-protein interaction modules that bind dockerin domains

together forming the core that glues together the Cellulosome
complex, a  multi-enzymatic complex present in cellulolytic

bacteria specialised in degrading cellulose (Bras et al., 2016;
Artzi et al., 2017; Pinheiro et al., 2008; Tavares et al., 1997;

Adams  et  al.,  2008).  Bacterial  cohesin-dockerin  rupture
forces (>120 pN) are among the highest ever reported for a

receptor-ligand system (Nash et al., 2016; Stahl et al., 2012).
It is unclear whether the TMEM132 cohesin domain mediates

such a strong interaction, in part because dockerin domain ho-
mologues are not detectable in vertebrate proteins.

2.3 TMEM132 domain architecture is ancient

The conserved region (corresponding to amino acids 127-239
of  human  TMEM132A)  preceding  the  cohesin  domain  in

TMEM132  is  also  evident  in  choanoflagellate  and  sponge
proteins  (HMMER E-value  <  0.005)  (Supplemental  Figure

S6). Strikingly, despite each of the five TMEM132 domains
(Figure 1) being identified independently in these choanoflag-

ellate and sponge proteins, all five are both present and in the
identical  order  in  the  three  cadherin  protein  families  -

lefftyrins, coherins, and hedglings - that were contained in the
last  common  ancestor  of  choanoflagellates  and  metazoans

(Abedin and King, 2008; Nichols et al., 2012) (Supplemental
Figure S2). The TMEM132 domain architecture is thus an-

cient, preceding the emergence of early metazoans, and a re-
peated constituent of ancient cadherin domain-containing pro-

teins with roles connecting the actin cytoskeleton with neigh-
bouring cells and the extracellular matrix (Brieher and Yap,

2013; Ratheesh and Yap, 2012).

2.4 Disease and biological relevance

Eleven proteins are currently known to contain missense mu-
tations within IG domains associated with 23 different disor-

ders  (Letunic  et  al.,  2015).  To these  now can  be  added  a
twelfth,  TMEM132E,  whose  R420Q  missense  mutation,

mapped to its second BIG domain (Supplemental Figure S1),
has been validated using a zebrafish model to cause autoso-

mal-recessive nonsyndromic hearing loss (Li et al., 2015). A
TMEM132B nonsynonymous  variant  that  replaces  a  serine

conserved  in  TMEM132B-E  in  a  putative  phosphorylation
motif has been associated with intra-cranial aneurysm (Far-

low et al., 2015) although this variant also occurs rarely (fre-
quency 1x10-4) in the general population (Lek  et al., 2016).

This lies adjacent to the Ser/Thr PP1 docking (Hendrickx et
al., 2009; Heroes et al., 2012) and WIRS cytoplasmic motifs

(Figure 1), the latter which is found in a variety of neurologi-
cal and other proteins including protocadherins (Chen et al.,

2014). The newly identified domains, and conserved domain
architecture, of TMEM132 proteins now should facilitate de-

tailed  experimental  investigation  of  these  proteins'  domain
and molecular functions and how these are modulated by se-

quence variants.

3 Conclusion
Their ancient ancestry and their associations with neurologi-

cal disease suggest  that  TMEM132 genes have  been unde-
serving of their relative obscurity. Our identification of these

proteins as CNS-expressed IG domain superfamily adhesion
molecules now places them in a more appropriate perspective

as a putative key connection between the extracellular matrix
and the actin-based cell cytoskeleton, with major roles in reg-
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ulating  changes in  neuronal  cell  morphology, motility, and
migration.  These  findings  should  precipitate  more  detailed

experimental and structural characterization of the TMEM132
family, and assist in formulating hypotheses concerning the

cellular  mechanisms  by  which  sequence  variants  in  these
genes contribute to neurological disease.
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