323 research outputs found

    The galactic population of white dwarfs

    Get PDF
    Original paper can be found at: http://www.iop.org/EJ/conf DOI: 10.1088/1742-6596/172/1/012004 [16th European White Dwarfs Workshop]The contribution of white dwarfs of the different Galactic populations to the stellar content of our Galaxy is only poorly known. Some authors claim a vast population of halo white dwarfs, which would be in accordance with some investigations of the early phases of Galaxy formation claiming a top-heavy initial– mass– function. Here, I present a model of the population of white dwarfs in the Milky Way based on observations of the local white dwarf sample and a standard model of Galactic structure. This model will be used to estimate the space densities of thin disc, thick disc and halo white dwarfs and their contribution to the baryonic mass budget of the Milky Way. One result of this investigation is that white dwarfs of the halo population contribute a large fraction of the Galactic white dwarf number count, but they are not responsible for the lion's share of stellar mass in the Milky Way. Another important result is the substantial contribution of the – often neglected – population of thick disc white dwarfs. Misclassification of thick disc white dwarfs is responsible for overestimates of the halo population in previous investigations.Peer reviewe

    Lexical evolution rates by automated stability measure

    Full text link
    Phylogenetic trees can be reconstructed from the matrix which contains the distances between all pairs of languages in a family. Recently, we proposed a new method which uses normalized Levenshtein distances among words with same meaning and averages on all the items of a given list. Decisions about the number of items in the input lists for language comparison have been debated since the beginning of glottochronology. The point is that words associated to some of the meanings have a rapid lexical evolution. Therefore, a large vocabulary comparison is only apparently more accurate then a smaller one since many of the words do not carry any useful information. In principle, one should find the optimal length of the input lists studying the stability of the different items. In this paper we tackle the problem with an automated methodology only based on our normalized Levenshtein distance. With this approach, the program of an automated reconstruction of languages relationships is completed

    Spectroscopic and Photometric Analysis of HS 1136+6646: A Hot Young DAO+K7 V Post-Common-Envelope, Pre-Cataclysmic Variable Binary

    Get PDF
    Extensive photometric and spectroscopic observations have been obtained for HS 1136+6646. The observations reveal a newly formed post–common-envelope binary system containing a hot ~DAO.5 primary and a highly irradiated secondary. HS 1136+6646 is the most extreme example yet of a class of short-period hot H-rich white dwarfs with K–M companion systems such as V471 Tau and Feige 24. HS 1136+6646 is a double-line spectroscopic binary showing emission lines of H i, He ii, C ii, Ca ii, and Mg ii, due in part to irradiation of the K7 V secondary by the hot white dwarf. Echelle spectra reveal the hydrogen emission lines to be double-peaked with widths of ~200 km s-1, raising the possibility that emission from an optically thin disk may also contribute. The emission lines are observed to disappear near the inferior conjunction. An orbital period of 0:83607 ± 0:00003 days has been determined through the phasing of radial velocities, emission-line equivalent widths, and photometric measurements spanning a range of 24 months. Radial velocity measurements yield an amplitude of KWD ÂŒ 69 ± 2 km s-1 for the white dwarf and KK7V = 115 ± 1 km s-1 for the secondary star. In addition to orbital variations, photometric measurements have also revealed a low-amplitude modulation with a period of 113.13 minutes and a semiamplitude of 0.0093 mag. These short-period modulations are possibly associated with the rotation of the white dwarf. From fits of the Balmer line profiles, the white dwarf is estimated to have an effective temperature and gravity of ~70,000 K and log g ~ 7:75, respectively. However, this optically derived temperature is difficult to reconcile with the far-UV spectrum of the Lyman line region. Far Ultraviolet Spectroscopic Explorer spectra show the presence of O vi absorption lines and a spectral energy distribution whose slope persists nearly to the Lyman limit. The extremely high temperature of the white dwarf, from both optical and UV measurements, indicates that the binary system is one of the earliest post–common-envelope objects known, having an age around 7:7 x 105 yr. Although the spectrum of the secondary star is best represented by a K7 V star, indications are that the star may be overly luminous for its mass

    A New Look at the Local White Dwarf Population

    Get PDF
    We have conducted a detailed new survey of the local population of white dwarfs lying within 20 pc of the Sun. A new revised catalog of local white dwarfs containing 122 entries (126 individual degenerate stars) is presented. This list contains 27 white dwarfs not included in a previous list from 2002, as well as new and recently published trigonometric parallaxes. In several cases new members of the local white dwarf population have come to light through accurate photometric distance estimates. In addition, a suspected new double degenerate system (WD 0423+120) has been identified. The 20 pc sample is currently estimated to be 80% complete. Using a variety of recent spectroscopic, photometric, and trigonometric distance determinations, we re-compute a space density of 4.8 ± 0.5 × 10−3 pc−3 corresponding to a mass density of 3.2 ± 0.3 × 10−3 M pc−3 from the complete portion of the sample within 13 pc. We find an overall mean mass for the local white dwarfs of 0.665 M, a value larger than most other non-volume-limited estimates. Although the sample is small, we find no evidence of a correlation between mass and temperature in which white dwarfs below 13,000 K are systematically more massive than those above this temperature. Within 20 pc 25% of the white dwarfs are in binary systems (including double degenerate systems). Approximately 6% are double degenerates and 6.5% are Sirius-like systems. The fraction of magnetic white dwarfs in the local population is found to be 13%

    Synergistic effects of the invasive Chinese tallow (Triadica sebifera) and climate change on aquatic amphibian survival

    Get PDF
    Changes in climate and the introduction of invasive species are two major stressors to amphibians, although little is known about the interaction between these two factors with regard to impacts on amphibians. We focused our study on an invasive tree species, the Chinese tallow (Triadica sebifera), that annually sheds its leaves and produces leaf litter that is known to negatively impact aquatic amphibian survival. The purpose of our research was to determine whether the timing of leaf fall from Chinese tallow and the timing of amphibian breeding (determined by weather) influence survival of amphibian larvae. We simulated a range of winter weather scenarios, ranging from cold to warm, by altering the relative timing of when leaf litter and amphibian larvae were introduced into aquatic mesocosms. Our results indicate that amphibian larvae survival was greatly affected by the length of time Chinese tallow leaf litter decomposes in water prior to the introduction of the larvae. Larvae in treatments simulating warm winters (early amphibian breeding) were introduced to the mesocosms early in the aquatic decomposition process of the leaf litter and had significantly lower survival compared with cold winters (late amphibian breeding), likely due to significantly lower dissolved oxygen levels. Shifts to earlier breeding phenology, linked to warming climate, have already been observed in many amphibian taxa, and with most climate models predicting a significant warming trend over the next century, the trend toward earlier breeding should continue if not increase. Our results strongly suggest that a warming climate can interact with the effects of invasive plant species, in ways we have not previously considered, to reduce the survival of an already declining group of organisms

    Multisite photometry of the pulsating Herbig Ae star V346 Ori

    Full text link
    CONTEXT: The study of pulsation in Pre--Main--Sequence intermediate-mass stars represents an important tool for deriving information on fundamental stellar parameters and internal structure, as well as for testing current theoretical models. Interest in this class of variable stars has significantly increased during the last decade and about 30 members are presently known in the literature. AIMS: We have constructed the frequency spectrum of the oscillations in V346 Ori. We apply asteroseismic tools to these data to estimate the intrinsic parameters (mass, luminosity, effective temperature) of V346 Ori and to obtain information on its internal structure. METHODS: CCD time series photometry in the Johnson V filter has been obtained for a total of 145.7 h of observations distributed over 36 nights. The resulting light curves have been subjected to a detailed frequency analysis using updated numerical techniques. Photometric and spectroscopic data have also been acquired to determine reliable estimates of the stellar properties. RESULTS: We have identified 13 oscillation frequencies, 6 of which with higher significance. These have been compared with the predictions of non-radial adiabatic models. The resulting best fit model has a mass of 2.1±\pm0.2 M⊙M_{\odot}, luminosity log⁥L/L⊙=1.37−0.13+0.11\log{L/L_{\odot}}=1.37^{+0.11}_{-0.13}, and effective temperature 7300±\pm200 K. These values are marginally consistent with the association of V346 Ori to Orion OB1a. Alternatively, V346 Ori could be placed at a slightly larger distance than previously estimated.Comment: Accepted for publication on A&A. 14 Pages, 11 Figure

    Cosmology at the Millennium

    Get PDF
    One hundred years ago we did not know how stars generate energy, the age of the Universe was thought to be only millions of years, and our Milky Way galaxy was the only galaxy known. Today, we know that we live in an evolving and expanding Universe comprising billions of galaxies, all held together by dark matter. With the hot big-bang model, we can trace the evolution of the Universe from the hot soup of quarks and leptons that existed a fraction of a second after the beginning to the formation of galaxies a few billion years later, and finally to the Universe we see today 13 billion years after the big bang, with its clusters of galaxies, superclusters, voids, and great walls. The attractive force of gravity acting on tiny primeval inhomogeneities in the distribution of matter gave rise to all the structure seen today. A paradigm based upon deep connections between cosmology and elementary particle physics -- inflation + cold dark matter -- holds the promise of extending our understanding to an even more fundamental level and much earlier times, as well as shedding light on the unification of the forces and particles of nature. As we enter the 21st century, a flood of observations is testing this paradigm.Comment: 44 pages LaTeX with 14 eps figures. To be published in the Centennial Volume of Reviews of Modern Physic

    Preliminary archaeoentomological analyses of permafrost-preserved cultural layers from the pre-contact Yup’ik Eskimo site of Nunalleq, Alaska : implications, potential and methodological considerations

    Get PDF
    Acknowledgements Site excavation and samples collection were conducted by archaeologists from the University of Aberdeen, with the help of archaeologists and student excavators from the University of Aberdeen University of Alaska Fairbanks and Bryn Mawr College, Kuskokwim Campus, College of Rural Alaska and residents of Quinhagak and Mekoryuk. This study is funded through AHRC grant to the project ‘Understanding Cultural Resilience and Climate Change on the Bering Sea through Yup’ik Ecological Knowledge, Lifeways, Learning and Archaeology’ to Rick Knecht, Kate Britton and Charlotta Hillderal (University of Aberdeen; AH/K006029/1). Thanks are due to Qanirtuuq Inc. and Quinhagak, Alaska for sampling permissions and to entomologists working at the CNC in Ottawa for allowing access to reference collections of beetles, lice and fleas. Yves Bousquet, Ales Smetana and Anthony E. Davies are specially acknowledged for their help with the identification of coleopteran specimens. Finally, we would also like to thank Scott Elias for useful comments on the original manuscript.Peer reviewedPublisher PD
    • 

    corecore