26,065 research outputs found
Linear Transmission of Composite Gaussian Measurements over a Fading Channel under Delay Constraints
Delay constrained linear transmission (LT) strategies are considered for the transmission of composite Gaussian measurements over an additive white Gaussian noise fading channel under an average power constraint. If the channel state information (CSI) is known by both the encoder and decoder, the optimal LT scheme in terms of the average mean-square error distortion is characterized under a strict delay constraint, and a graphical interpretation of the optimal power allocation strategy is presented. Then, for general delay constraints, two LT strategies are proposed based on the solution to a particular multiple measurements-parallel channels scenario. It is shown that the distortion decreases as the delay constraint is relaxed, and when the delay constraint is completely removed, both strategies achieve the optimal performance under certain matching conditions. If the CSI is known only by the decoder, the optimal LT strategy is derived under a strict delay constraint. The extension to general delay constraints is elusive. As a first step towards understanding the structure of the optimal scheme in this case, it is shown that for the multiple measurementsparallel channels scenario, any LT scheme that uses only a oneto-one linear mapping between measurements and channels is suboptimal in general
Waveguide mode imaging and dispersion analysis with terahertz near-field microscopy
Propagation of terahertz waves in hollow metallic waveguides depends on the waveguide mode. Near-field scanning probe terahertz microscopy is applied to identify the mode structure and composition in dielectric-lined hollow metallic waveguides. Spatial profiles, relative amplitudes, and group velocities of three main waveguide modes are experimentally measured and matched to the HE11, HE12, and TE11 modes. The combination of near-field microscopy with terahertz time-resolved spectroscopy opens the possibility of waveguide mode characterization in the terahertz band
Functional Big-step Semantics
When doing an interactive proof about a piece of software, it is important that the underlying programming language’s semantics does not make the proof unnecessarily difficult or unwieldy. Both smallstep and big-step semantics are commonly used, and the latter is typically given by an inductively defined relation. In this paper, we consider an alternative: using a recursive function akin to an interpreter for the language. The advantages include a better induction theorem, less duplication, accessibility to ordinary functional programmers, and the ease of doing symbolic simulation in proofs via rewriting. We believe that this style of semantics is well suited for compiler verification, including proofs of divergence preservation. We do not claim the invention of this style of semantics: our contribution here is to clarify its value, and to explain how it supports several language features that might appear to require a relational or small-step approach. We illustrate the technique on a simple imperative language with C-like for-loops and a break statement, and compare it to a variety of other approaches. We also provide ML and lambda-calculus based examples to illustrate its generality
Spatially resolved characterization of InGaAs/GaAs quantum dot structures by scanning spreading resistance microscopy
Cross-sectional scanning spreading resistance microscopy (SSRM) is used to investigate stacked InGaAs/GaAs quantum dot(QD)structures with different doping schemes. Spatially resolved imaging of the QDs by SSRM is demonstrated. The SSRM contrast obtained for the QD layers is found to depend on doping in the structure. In the undoped structures both QD-layers and QDs within the layers could be resolved, while in the dopedstructures the QD layers appear more or less uniformly broadened. The origin of the SSRM contrast in the QD layer in the different samples is discussed and correlated with doping schemes.T. Hakkarainen, O. Douhéret, and S. Anand would like
to acknowledge the Swedish Research Council VR for fi-
nancial support and the Kurt-Alice Wallenberg KAW foundation
for financing the microscope. L. Fu, H. H. Tan, and C.
Jagadish would like to acknowledge the Australian Research
Council ARC for financial support and Australian National
Fabrication Facility ANFF for access to the facilities
An integrated approach to inventory and flexible capacity management subject to fixed costs and non-stationary stochastic demand
In a manufacturing system with flexible capacity, inventory management can be coupled with capacity management in order to handle fluctuations in demand more effectively. Typical examples include the effective use of temporary workforce and overtime production. In this paper, we discuss an integrated model for inventory and flexible capacity management under non-stationary stochastic demand with the possibility of positive fixed costs, both for initiating production and for using contingent capacity. We analyze the characteristics of the optimal policies for the integrated problem. We also evaluate the value of utilizing flexible capacity under different settings, which enable us to develop managerial insights. © 2008 The Author(s)
Tales of a so(u)rcerer : optimal sourcing decisions under alternative capacitated suppliers and general cost structures
Most companies must procure items necessary for their businesses from out- side sources, where there are typically a number of competing suppliers with varying cost structures, price schemes, and capacities. This situation poses some interesting research questions from the outlook of different parties in the supply chain. We consider this problem from the perspective of (i) the party that needs to outsource, (ii) the party that is willing to serve as the source, and (iii) the party that has in-house capability to spare. We allow for stochastic demand, capacitated facilities (in-house and suppliers'), and general structures for all relevant cost components. Some simpler versions of this problem are shown to be NP-hard in the literature. We make use of a novel dynamic programming model with pseudo-polynomial complexity to address all three perspectives by solving the corresponding problems to optimality. Our modeling approach also lets us analyze different aspects of the problem environment such as pricing schemes and channel coordination issues. We derive several managerial insights, some of which are counter to collective intuition
Ferroelectric properties of (1 − x)Bi(Zn1/2Ti1/2)O3–xPbZrO3 ceramics
The (1 − x)Bi(Zn1/2Ti1/2)O3–xPbZrO3 solid solution ceramics were prepared by using solid-state reaction method, and their ferroelectric properties were investigated. It was found that the perovskite structure is stable for compositions with x ≥ 0.900. Within this composition range, the crystal structure of the solid solution preserves the orthorhombic symmetry of PbZrO3 (PZ). The Curie point of the ceramics was found to decrease with increasing Bi(Zn1/2Ti1/2)O3 (BZT) content. The intermediate ferroelectric phase of PZ was stabilized by BZT addition and exists within a much wider temperature range in the solid solution
- …