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Abstract In a manufacturing system with flexible capacity, inventory management
can be coupled with capacity management in order to handle fluctuations in demand
more effectively. Typical examples include the effective use of temporary workforce
and overtime production. In this paper, we discuss an integrated model for inventory
and flexible capacity management under non-stationary stochastic demand with the
possibility of positive fixed costs, both for initiating production and for using contin-
gent capacity. We analyze the characteristics of the optimal policies for the integrated
problem. We also evaluate the value of utilizing flexible capacity under different set-
tings, which enable us to develop managerial insights.

Keywords Inventory · Production · Stochastic models · Capacity management ·
Flexible capacity

1 Introduction

A crucial problem that manufacturing companies face is how to cope with volatility
in demand. For make-to-stock environments, holding safety stocks is the traditional
remedy for handling the variability in demand. If demand is non-stationary, as it is
in seasonal business environments, then adjusting production capacity dynamically
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is another possible tool. While there is an extensive amount of literature on both of
these measures, our aim is to contribute to the relatively limited research that considers
both at the same time, which may be necessary especially if the demand is both non-
stationary and stochastic. Consequently, in this paper we consider a periodic review
make-to-stock production environment under non-stationary stochastic demand.

In most of the traditional production/inventory literature, either an infinite produc-
tion capacity is assumed or a given finite capacity is considered as a constraint rather
than as a decision variable. We relax this assumption in the sense that the flexible
capacity level in each period is to be optimized, as well as the amount of production.
Capacity can be defined as the total productive capability of all productive resources
such as workforce and machinery. These productive resources can be permanent or
contingent. We define permanent capacity as the maximum amount of production
possible in regular work time by utilizing internal resources of the company, such
as existing workforce level on the steady payroll or the machinery owned or leased
by the company. Total capacity can be increased temporarily by acquiring contingent
resources, which can be internal or external, such as hiring temporary workers from
external labor supply agencies, subcontracting, authorizing overtime production, rent-
ing work stations, and so on. We refer to this additional capacity acquired temporarily
as the contingent capacity. Flexible capacity management refers to adjusting the total
production capacity in any period with the option of utilizing contingent resources in
addition to the permanent ones.

Capacity decisions can occur in all hierarchies of decision making: strategic, tac-
tical, and operational. Examples of each type of decision are determining how many
production facilities to operate, determining the permanent capacity of a facility, and
making contingent capacity adjustments. Our focus is on the operational level. For
ease of exposition, we refer to the workforce capacity setting in general. More specif-
ically, we use the temporary (contingent) labor jargon to refer to capacity flexibility.
Consequently, the problem we consider can be viewed as one where the production is
mostly determined by the workforce size, permanent and contingent.

There exists a significant usage of flexible workforce in many countries. For exam-
ple, 6.6% of the active labor force of the Netherlands was composed of flexible workers
(temporary, standby, replacement, and such other workers) in 2003 (Beckers 2005), and
32% of the employees in the manufacturing industry were regularly working overtime
in 2004 (Beckers and Siermann 2005). US Bureau of Labor Statistics indicates that
in February 2005 there were 14.8 million flexible workers (independent contractors,
on-call workers, temporary help agency workers, and workers provided by contract
firms) constituting 10.7% of total employment (US Bureau of Labor Statistics 2006).
Aside from the workers with alternative work arrangements as indicated above, con-
tingent workers (temporary jobs) accounted for 4.1% of the total US employment. In
March 2006, 7.9% of the active labor force in Turkey was composed of contingent
workers (Turkish Statistical Institute 2006).

Temporary workers can be hired in any period and they are paid only for the periods
they work, whereas permanent workers are on a payroll. According to our experience,
the lead time of acquiring temporary workers is generally short for jobs that do not
require high skill levels. It takes as little as 1 or 2 days to acquire temporary work-
ers from the external labor supply agencies, whereas in some cases temporary labor
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acquisition is actually practically immediate. In some developing countries, abundant
temporary workers that are looking for a job and the companies that are in need of
temporary labor gather in some venues early in the morning and the companies hire
workers that they are going to make use of that very day.

Changing the level of permanent capacity as a means of coping with demand fluc-
tuations, such as hiring and/or firing permanent workers frequently, is not only very
costly in general, but it may also have many negative impacts on the company. In
case of labor capacity, the social and motivational effects of frequent hiring and firing
makes this tool even less attractive. Utilizing flexible capacity, such as hiring tem-
porary workers from external labor supply agencies, is a means of overcoming these
issues, and we consider this as one of the two main operational tools of coping with
fluctuating demand, along with holding inventory. Nevertheless, long-term changes
in the state of the world can make permanent capacity changes unavoidable. Conse-
quently, we consider the determination of the permanent capacity level as a tactical
decision that is made at the beginning of a finite planning horizon and not changed
until the end of the horizon. This decision is kept out of the scope of this study since
we focus only on the operational decisions. We refer the reader to Alp and Tan (2008)
for the problem of determining the optimal permanent capacity level.

While flexibility provides many benefits, it comes at a cost. The nominal variable
cost of the flexible resources are likely to be higher than that of the permanent ones.
In the workforce context, the productivity of temporary workers is probably less than
that of permanent workers. Finally, there may be fixed costs associated with ordering
contingent capacity, such as the costs of contacting external labor supply agencies
and training costs. Another type of fixed costs in the problem environment that we
introduce might be the costs associated with initiating production in each period, such
as setup costs, overhead costs, and the like.

In many environments, it is possible that the contingent capacity that can be acquired
in any period is limited, which is the case when—for example—overtime production
is the only tool for temporarily increasing production capacity, due to reasons such as
unavailability of temporary workers or special skill requirements. Such environments
also fall within our setting, as we allow for an upper bound in the amount of contin-
gent capacity that can be acquired in any period. In the context of overtime production,
overtime workers would correspond to contingent capacity, and initiating an overtime
production would correspond to ordering contingent capacity subject to a fixed cost
associated with facilities, managerial overhead, and the like.

Our contributions is this paper can be summarized as follows:

• We show the equivalence of the problem that we consider with the classical capac-
itated production/inventory problem which has a piecewise-linear production cost
function.

• We characterize the optimal ordering policy when the setup costs are negligible.
When the setup costs are positive, we derive the optimal policy for the single period
problem. For the multi-period problem, we discuss some properties of the optimal
solution through numerical studies.

• Finally, we build several managerial insights as to the use and value of capacity
flexibility.
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The rest of the paper is organized as follows. We present a review of relevant
literature in Sect. 2 and present our dynamic programming model in Sect. 3. The opti-
mal policy for the integrated problem is discussed in Sect. 4, and the value of utilizing
flexible capacity is analyzed in Sect. 5. We summarize our conclusions and suggest
some possible extensions in Sect. 6.

2 Related literature

The problem that we deal with has interactions with a number of related fields: (i)
integrated production/capacity management, (ii) workforce planning and flexibility,
and (iii) capacitated production/inventory models. Instead of providing a detailed lit-
erature survey on each of these fields, we cite examples of related work from each of
them and discuss some of the similarities and differences between those problems and
the one that we consider.

An excellent survey of strategic capacity management problems focusing mainly
on the capacity expansion decisions is presented by Van Mieghem (2003). The author
discusses prominent issues in formulating and solving various capacity management
problems.

Atamtürk and Hochbaum (2001) deal with an integrated capacity and inventory
management problem under a finite planning horizon and deterministic demand, where
trade-offs between capacity expansions, subcontracting, production, and inventory
holding are exploited. Angelus and Porteus (2002) also deal with an integrated prob-
lem for a short-life-cycle product where the demand has a stochastically increasing
and then decreasing structure. Authors show that the optimal capacity level follows a
target interval policy. In another work that deals with integrated problems, Dellaert and
De Kok (2004) show that integrated capacity and inventory management approaches
outperform decoupled approaches.

Hu et al. (2004) deal with an environment similar to ours: There is a fixed permanent
production capacity, but it can be increased temporarily by using contingent capacity.
Unlike ours, those problems are modelled on a continuous-time framework with a
demand rate that is Markov-modulated, and no fixed costs are considered. Tan and
Gershwin (2004) also deal with a similar problem. The differences are the existence
of several subcontracting opportunities with different cost and capacity structures and
the demand being dependent on the lead time distribution during out-of-stock periods.
Yang et al. (2005) deal with a production/inventory system under uncertain capac-
ity levels and the existence of outsourcing opportunities. In their model, there is no
fixed cost of production but a fixed cost is associated with outsourcing. The decision
epochs of producing with internal resources and determining the quantity of outsourc-
ing are distinguished in such a way that the outsourcing decision is made only after
the capacity is observed, production is materialized, and the demand is observed. By
using this model, the authors characterize the optimal outsourcing policy under certain
conditions and elaborate on the optimal policy of production with internal resources.

In the workforce planning and flexibility field, Holt et al. (1960) in their semi-
nal work present models that exploit the trade-off between keeping large permanent
workforce levels capable of satisfying peak season demands and frequent adjustment

123



An integrated approach to inventory and flexible capacity management 341

of the workforce level to cope with fluctuations. Indeed, this very idea of aggregate
production planning problem constitutes the essence of our problem too; neverthe-
less, we consider non-stationary stochastic demand, unlike the deterministic demand
assumption of aggregate production planning models. Wild and Schneeweiss (1993)
analyze and compare four “instruments” to cope with fluctuating demand when the
capacity is defined in terms of work force level: variation of monthly working time,
use of overtime, employment of temporary workers, and use of leased work force.
A hierarchical model based on dynamic programming is presented for making rational
decisions on the selective use of these instruments.

Milner and Pinker (2001) deal with the design of contracts between firms and exter-
nal labor supply agencies for hiring long-term and temporary workers under supply
and demand uncertainty in a single period environment. In a related work, Pinker and
Larson (2003) consider the problem of managing permanent and contingent workforce
levels under uncertain demand in a finite planning horizon where inventory holding
is not allowed. The sizes of regular and temporary labor are decision variables that
are fixed throughout the planning horizon, but the capacity level may be adjusted by
setting the number of shifts for each class of workers.

The papers by Federgruen and Zipkin (1986) and Kapuscinski and Tayur (1998)
are two examples of the research stream on capacitated production/inventory prob-
lems with stochastic demand, where no fixed costs of production exist. In this case, it
is shown that base-stock type policies are optimal. Gallego and Scheller-Wolf (2000)
consider the fixed cost of production under a similar environment and partially charac-
terize the optimal policy. Our model is an extension and a generalization of this stream
of research, in which we provide the explicit solution of a single period problem.

Finally, the special case of the problem that we consider with no fixed costs is shown
in Sect. 3 to translate into the classical capacitated production/inventory problem with
a piecewise-linear, convex production cost. When the capacity constraint is neglected,
Karlin (1958) characterizes the optimal policy for the case of a strictly convex produc-
tion cost function as state-dependent order-up-to type . For the single-period problem
with a piecewise-linear (hence non-strict) convex production cost and infinite capac-
ity, Porteus (1990) discusses that the optimal policy is of order-up-to type, where the
order-up-to level is piecewise-linear increasing in initial inventory level.

3 Model formulation

In this section, we present a finite-horizon dynamic programming model to formulate
the problem under consideration. Unmet demand is assumed to be fully backlogged.
The relevant costs in our environment are inventory holding and backorder costs, unit
cost of permanent and contingent capacity, fixed cost of production, and fixed cost of
ordering contingent capacity, all of which are non-negative. We assume that raw mate-
rial is always available, and that the lead time of production and acquiring contingent
capacity can be neglected. We allow for an upper bound on the supply of contingent
workers.

We consider a production cost component which is a linear function of permanent
capacity in order to represent the costs that do not depend on the production quantity
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(even when there is no production), such as the salaries of permanent workers. That is,
each unit of permanent capacity costs cp per period, and the total cost of permanent
capacity per period is U × cp, for a permanent capacity of size U , independent of
the production quantity. We do not consider material-related costs in our analysis. In
order to synchronize the production quantity with the number of workers, we redefine
the “unit production” as the number of actual units that an average permanent worker
can produce; that is, the production capacity due to U permanent workers is U “unit”s
per period. We also define the cost of production by temporary workers in the same
unit basis, where the cost for flexible workers is related to their productivity. In par-
ticular, let c′

c be the hiring cost of a temporary worker per period, and let c′′
c denote

all other relevant variable costs associated with production by temporary workers per
period. It is possible that the productivity rates of permanent and temporary workers
are different. Let γ be the average productivity rate of temporary workers, relative
to the productivity of permanent workers; that is, each temporary worker produces γ

units per period. Assuming that this rate remains approximately the same in time, the
unit production cost by temporary workers, cc, can be written as cc = (c′

c + c′′
c )/γ .

It is likely that 0 < γ < 1, but the model holds for any γ > 0.
Under these settings, it turns out that the production quantity of a period, Qt , is

sufficient to determine the number of temporary workers that need to be ordered in
that period, mt , for any given level of permanent capacity, via mt = [(Qt − U )+/γ ],
ignoring integrality, where (·)+ denotes the value of the argument inside if it is positive
and assumes a value of zero otherwise. There also exists an upper bound, V ′, on the
size of contingent capacity that can be ordered at any period, so that V = V ′/γ
defines this limit in terms of the permanent-worker equivalent “unit”s. In the context
of overtime production, V would be defined as a proportion of U .

Let K p denote the fixed cost of production and Kc denote the fixed cost of order-
ing contingent capacity. K p is charged whenever production is initiated, even if the
permanent workforce size is zero and all production is due to temporary workers.
Therefore, it is never optimal to order contingent capacity unless permanent capacity
is fully utilized. On the other hand, Kc is charged only when temporary workers are
ordered, independent of the amount.

Consequently, the problem translates into the classical capacitated production/
inventory problem with a production capacity of U + V and a piecewise-linear pro-
duction cost (made up of labor costs), which is neither convex nor concave under
positive fixed costs. See Fig. 1 for an illustration. Note that when K p and Kc are both
zero, this function is convex.

The order of events is as follows. At the beginning of each period t , the initial
inventory level, xt is observed, the production decision is made and the inventory
level is raised to yt ≤ xt +U + V by utilizing the necessary capacity means; that is, if
yt ≤ xt +U then only permanent capacity is utilized, otherwise a contingent capacity
of size mt = [(yt − xt − U )+/γ ] is hired on top of full permanent capacity usage. At
the end of period t , the demand dt is met/backlogged, resulting in xt+1 = yt − dt . We
denote the random variable corresponding to the demand in period t as W (t) and its
distribution function as Gt (w). Consequently, denoting the minimum cost of operat-
ing the system from the beginning of period t until the end of the planning horizon as
ft (xt ), we use the following dynamic programming formulation to solve the integrated
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Fig. 1 Production cost function under positive fixed costs

capacity and inventory management problem (CIMP):

(CIMP): ft (xt ) = Ucp + min
yt :xt ≤yt ≤xt +U+V

{
K pδ(yt − xt ) + Kcδ(yt − xt − U )

+[yt − xt − U ]+cc + Lt (yt ) + αE
[

ft+1(yt − Wt )
]}

for t = 1, 2, . . . , T

where Lt (yt ) = h
∫ yt

0 (yt − w)dGt (w) + b
∫ ∞

yt
(w − yt )dGt (w) is the regular loss

function, and δ(·) is the function that attains the value 1 if its argument is positive, and
zero otherwise. We assume the ending condition to be fT +1(xT +1) = 0. We note that
the optimal contingent capacity usage is independent of cp, because the permanent
capacity is fixed and cannot be changed, and hence the costs of holding that capacity
is “sunk”.

Remark 1 CIMP reduces to a capacitated production/inventory problem with a con-
cave production cost when V = 0 or Kc → ∞ or cc → ∞.

4 Analysis

The characteristics of the problem and the optimal solution show significant differ-
ences depending on whether the fixed costs are strictly positive or not. Therefore, we
analyse those two cases separately in the following two subsections:

4.1 Analysis with no fixed costs

In what follows we characterize the optimal policy for the problem without fixed costs.
We start by defining the auxiliary functions: J p

t (y) = Lt (y) + αE
[

ft+1(y − Wt )
]
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and J c
t (y|x) = J p

t (y) + cc(y − x − U ). Then the integrated capacity and inventory
management problem without fixed costs (CIMP-NF) can be stated as

(CIMP-NF): ft (xt ) = Ucp + min
yt :xt ≤yt ≤xt +U+V

{Jt (yt |xt )}

where

Jt (y|x) =
{

J p
t (y) if y ≤ x + U

J c
t (y|x) if y ≥ x + U

for t = 1, 2, . . . , T . Recalling that fT +1(x) = 0, J p
T (y) is convex1 in y ∈ � since

the loss function LT (y) is a convex function. J c
T (y|x) is also a convex function in

y ∈ � for a given value of x . Hence, the first order condition is sufficient for the
minimization, where

dJ p
T (y)

dy
= (h + b)GT (y) − b and

dJ c
T (y|x)

dy
= (h + b)GT (y) − b + cc.

Let y p
t and yc

t be the minimizers of the functions J p
t (y) and J c

t (y|x), respectively, for
t = 1, 2, . . . , T . Then, assuming that G is an invertible function and b ≥ cc, we have

y p
T = G−1

T

(
b

h + b

)
and yc

T = G−1
T

(
b − cc

h + b

)
.

Theorem 1 Optimal ordering policy of CIMP-NF at any period t = 1, 2, . . . , T is of
state-dependent order-up-to type, where the optimal order-up-to level, y∗

t (xt ), is

y∗
t (xt ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

xt + U + V if xt ≤ yc
t − U − V

yc
t if yc

t − U − V ≤ xt ≤ yc
t − U

xt + U if yc
t − U ≤ xt ≤ y p

t − U

y p
t if y p

t − U ≤ xt ≤ y p
t

xt if y p
t ≤ xt

.

Proof See Appendix.

We note that although yc
t and y p

t are independent of xt , y∗
t (xt ) is a function of xt .

The optimal order-up-to level as a function of xt is illustrated in Fig. 2 for a single
period problem instance.

4.2 Analysis with fixed costs

As discussed in Sect. 3, when the fixed costs in the problem, K p and Kc, are positive,
CIMP translates into a finite-horizon capacitated production/inventory problem with

1 We note that fT +1(x) = 0 is not necessary for the convexity of J p
T (y). As long as fT +1(x) is convex,

this result and the other convexity-related results that we present in this paper hold.
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Fig. 2 Illustration of the optimal policy with no fixed costs

neither concave nor convex production costs. In what follows, we characterize the
optimal ordering policies for the last period of the planning horizon (single-period
problem) and discuss the complications of deriving general optimal policies for mul-
tiple periods. We show that the optimal policy for the single-period problem is a
state-dependent (s, S)-type policy. Nevertheless, the order-up-to level has a particular
structure. It turns out that the optimal order-up-to level attains two distinct scalar val-
ues in two separate regions of the starting inventory level x , one involving production
with the permanent capacity only and the other involving production with the con-
tingent capacity as well; it is optimal to produce with full permanent and contingent
capacity when x is below a certain value and to produce with full permanent capacity
at a specific region of x ; and no production is necessary for sufficiently high levels
of x .

We first note that, due to the convexity of the functions JT (y|x) and J p
T (y), there

exist unique numbers sv(x), sc(x), su(x), and s p for a given value of x such that

sv(x) = min{s : JT (s|x) = J c
T (x + U + V |x) + K p + Kc},

sc(x) = min{s : JT (s|x) = J c
T (yc

T |x) + K p + Kc},
su(x) = min{s : J p

T (s) = J p
T (x + U ) + K p},

s p = min{s : J p
T (s) = J p

T (y p
T ) + K p}.

In order to simplify the exposition of the optimal policy in the last period, we introduce
two auxiliary functions, s(x) and S(x), as follows:
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s(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

max{su(x), sv(x)} if x ≤ yc
T − U − V

max{su(x), sc(x)} if yc
T − U − V ≤ x ≤ yc

T − U

su(x) if yc
T − U ≤ x ≤ y p

T − U

s p if y p
T − U ≤ x

S(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x + U + V if s(x) = sv(x)

yc
T if s(x) = sc(x)

x + U if s(x) = su(x)

y p
T if s(x) = s p

Theorem 2 The optimal ordering policy of the last period is

y∗
T (x) =

{
S(x) if x ≤ s(x)

x otherwise
.

Proof See Appendix.

In this optimal policy, there exists a state-dependent reorder level which is a func-
tion of the starting inventory level, x . This function, s(x), takes the value of one of
the critical levels sv(x), sc(x), su(x), or s p, where production only pays off when
the starting inventory is below that level, due to the existence of fixed costs. Critical
levels sv(x), sc(x), su(x), and s p can be considered as the “reorder” levels for produc-
tion with full permanent and contingent capacity, production with partial contingent
capacity, production with full permanent capacity, and production with idle capacity,
respectively. Therefore, if the starting inventory level is below the reorder level, the
optimal order-up-to level is given by x + U + V, yc

T , x + U , or y p
T depending on

the value that s(x) takes, either sv(x), sc(x), su(x), or s p, respectively. Otherwise, no
orders are placed. The optimal policy is illustrated in Fig. 3.

The following result characterizes the structure of the reorder level function with
respect to the starting inventory level, x .

Theorem 3 s(x) is non-decreasing in x.

Proof See Appendix.

While it is more likely that the problem environment that we have discussed has a
multi-period structure, there are also some problem environments where the single-
period model is appropriate. When the demand for the product is mostly observed in
a condensed time interval, such as the Christmas period, the single-period model is
clearly relevant. As a matter of fact, one of our motivations in initiating this research
came from a CD-producer which faces elevated demand during Christmas season,
since CDs are popular gift items. The company utilizes temporary labor for this extra
production, particularly for manual CD boxing and packaging, which is required for
all CDs except for the “regular” CDs that are boxed in standard 1-CD jewel boxes.
Another application would be a product selection problem where the item(s) to produce
in a finite planning horizon must be selected. In that case, this tactical level decision
could be handled by representing the total planning horizon as a single-period. Specif-
ically, such a firm may be capable of producing a variety of items but is able to produce
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Fig. 3 Illustration of the optimal policy with fixed costs

only one or a small number of them due to scarce, possibly shared resources. More-
over, utilizing flexible resources such as overtime or temporary labor usage may be
inevitable due to capacitated permanent productive resources. In such environments,
product selection decisions might be based on the expected total costs of producing
items (along with the associated revenues) depending on their probabilistic demand
behaviors, starting inventories, productivity of permanent and temporary resources,
operating costs, and availability of flexible resources. The single-period problem could
be solved for all possible (combinations of) alternatives—with K p denoting the total
fixed costs of production changeovers from one planning horizon to the other—in
order to make the decision as to how much of which item(s) should be produced.

The optimal policy of the last period cannot simply be generalized to multiple
periods. For example, Scarf (1959) generalizes the optimality of (s, S) policy of the
single-period in the standard production/inventory problem with a fixed cost to the
multiple period case by making use of K -convexity in the inductive arguments. In
our problem, even for the special case of K p = 0, Kc-convexity does not necessarily
hold. Similarly, quasiconvexity fails to be preserved from the last period backwards.
For the other special case of Kc = 0, K p-convexity or quasiconvexity does not
necessarily hold either. Gallego and Scheller-Wolf (2000) consider a capacitated pro-
duction/inventory problem under fixed costs of production, which is a special case of
CIMP as mentioned in Remark 1. They state that the full characterization of the opti-
mal policies for this special case is extremely difficult but the authors could generate
four regions of the starting inventory level where optimal production decisions are
characterized to a certain extent. We conjecture the optimal ordering policy of CIMP
to be even more complicated than that of this special case.
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Fig. 4 Starting inventory versus optimal production quantity for three periods to go

We also observe that a monotonic relation between the starting inventory level (x)
and the optimal production quantity in CIMP does not necessarily exist. An example of
this result is depicted in Fig. 4, which is the result of a 3-period problem instance with
K p = 30, Kc = 40, U = 50, V = 20, cp = 1.5, cc = 2.5, b = 5, h = 1, where the
demand is Poisson with an expected value of 20. We note that for this problem instance
the optimal production quantity has a non-increasing structure in x up to x = −11,
where the optimal production quantity is 35. However, when x = −10 the optimal
decision is to produce 50 units due to complex dynamics involving the fixed costs and
the permanent capacity, and this violates the monotonic structure. Specifically, when
x = −10, the expected total cost of production with full permanent capacity of 50
in this period turns out to be less than that of producing 34 due to the opportunity of
avoiding a prospective fixed cost in some future period.

Figure 4 also shows the optimal order-up-to levels with respect to x . We observe
that there are three distinct values of optimal order-up-to levels on this figure other
than x (no production), x + U (full permanent capacity production), and x + U + V
(full permanent and contingent capacity production). Note that there exist only two
distinct critical order-up-to points (other than x , x +U , and x +U + V ) in the optimal
policy stated for the last period.

5 Value of flexible capacity

Our purpose in this section is to investigate the value of utilizing flexible capacity and
its sensitivity to change in the following system parameters: fixed cost of production,
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unit cost of permanent capacity, unit and fixed costs of contingent capacity, backorder
cost, the size of permanent capacity, upper bound on the size of contingent capacity
that can be acquired (which we refer to as “maximum contingent capacity” hereafter),
and the variability of the demand. We compare a flexible capacity (FC) system with
an inflexible one (IC), where the contingent capacity can be utilized in the former but
cannot in the latter.

We define the (absolute) value of flexible capacity, VFC, as the difference between
the optimal expected total cost of operating the IC system, ETCIC, and that of the FC
system, ETCFC. That is, VFC = ETCIC − ETCFC. In order to reflect the relativity, we
also define the relative value of flexible capacity as %VFC = VFC/ETCIC. We note
that both VFC and %VFC are always non-negative.

We conduct some numerical experiments to reveal the sensitivity of VFC and %VFC
with respect to changes in the rest of the system parameters. In the IC case of these
numerical examples, we simply take V = 0 (see Remark 1). We solve CIMP for the
following set of input parameters, unless otherwise noted: T = 12, U = 10, V = 4,
b = 5, h = 1, cc = 2.5, cp = 1.5, K p = 0, Kc = 10, α = 0.99, and x1 = 0.
We set K p = 0 to represent a production environment with negligible fixed cost of
production and V = 4 to represent an upper bound on the contingent capacity that
can be acquired (for example, in the form of producing overtime which increases the
capacity by at most 40% or limited temporary worker supply). We consider demand
that follows a seasonal pattern with a cycle of 4 periods, where the expected demand
is 15, 10, 5, and 10, respectively. Note that the permanent capacity is the same as
the average demand for this base set. We first assume that the demand has a Poisson
distribution. In the results that we present, we use the term “increasing” (decreasing)
in the weak sense to mean “non-decreasing” (non-increasing). We provide intuitive
explanations to all of our results below and our findings are verified through several
numerical studies. However, like any experimental result, one should be careful about
generalizing them, especially for extreme values of problem parameters.

5.1 Effects of backorder and contingent capacity costs

We first test the value of flexibility with respect to the backorder cost by varying the
value of b between 2 and 10. Table 1 verifies intuition in the sense that %VFC is
higher when backorders are more costly, or equivalently, when higher service levels
are targeted.

In order to explore the effects of fixed and unit costs of contingent capacity on the
value of flexibility, it suffices to revert to the definition of VFC and %VFC. Then, it
follows that the value of flexible capacity increases as the contingent capacity becomes

Table 1 % Value of flexible capacity versus backorder cost under different maximum contingent capacity
levels

b 3 4 5 6 7 8 9 10

%VFC (V = 4) 18.90 26.89 33.39 38.73 43.24 47.04 50.32 53.15

%VFC (V = 10) 20.62 29.07 36.00 41.66 46.45 50.48 53.93 56.93
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Fig. 5 % Value of flexible capacity versus permanent capacity size under different CVs when V = 4

less costly to utilize. It is easy to see why this relation holds: As cc or Kc decreases
while the other parameters are kept constant, ETCIC remains the same, since flexi-
ble capacity is not utilized in this case, but ETCFC decreases due to decreased costs.
Consequently, both VFC and %VFC increases.

5.2 Effects of demand variability and the size of permanent capacity

In this section we assume Gamma distribution for demand, since testing the impact of
change in demand variance for a given expected demand is not possible with a Poisson
distribution. We also replicated the tests using Normal distribution (with smaller CV
values). We obtained similar results, therefore we do not report them here. We refer
to Figs. 5 and 6 for the illustration of our findings.

We first observe that VFC increases as the permanent capacity decreases, as can be
expected, since the inadequacy of permanent capacity increases the requirement for
contingent capacity. The value of flexibility becomes extremely high for low levels
of permanent capacity, because of elevated backorder costs in the case of IC. Nev-
ertheless, the monotonic behavior does not necessarily hold for %VFC, as shown in
Fig. 5. This is because the rate of increase in ETCIC as U decreases dominates the
rate of increase in ETCIC − ETCFC when the permanent capacity is extremely low,
due to cumulative backordering even with the use of maximum contingent capacity.
However, if the maximum contingent capacity (V ) is high enough, then the behavior
described for VFC also holds for %VFC, as shown in Fig. 6, where no limit on the
supply of contingent capacity is assumed.

Next, we test the impact of changes in demand variance for a given expected
demand. We vary the coefficient of variation (CV) values between 0.5 and 1.5. The

123



An integrated approach to inventory and flexible capacity management 351

Permanent Capacity
0 5 10 15 20 25 30 35 40

60%

70%

80%

90%

100%

50%

40%

30%

20%

10%

0%

CV=0.5
CV=1
CV=1.5

Fig. 6 % Value of flexible capacity versus permanent capacity size under different CVs when V → ∞

results are surprising, in the sense that the value of flexible capacity does not always
increase as variance increases. The reason for this is as follows. While both of the
ETCIC and ETCFC terms do increase as demand variance increases, the increase in
ETCIC term is less than that in ETCFC under low capacity. This is because most
of the demand is backlogged anyway for the IC case, whereas the expected total cost
increases more significantly for the flexible system. This behavior also holds for %VFC
as shown in Figs. 5 and 6. (We note that the condition discussed here is sufficient for
%VFC to decrease, but not necessary. This is because %VFC would decrease even
when VFC increases, as long as the increase in VFC is in a lower rate than that in
ETCIC.) However, when the permanent capacity is sufficient to meet the demand on
the average, the value of flexibility increases as demand variance increases.

Another observation that we make is that the value of flexible capacity continues to
be very significant under high demand variance, even when the permanent capacity is
much higher than average demand, especially when the maximum contingent capacity
is high enough. For example, when CV = 1.5 and no limit on the supply of contingent
capacity is assumed, %VFC equals 15.3% for U = 20, which is twice the size of
average demand.

5.3 Effects of permanent capacity costs

As discussed in Sect. 3, the optimal contingent capacity usage is independent of cp for
any given value of U . Hence, VFC remains unchanged for all values of cp when other
problem parameters are kept constant. However, the relative value, %VFC, decreases
for higher cp, because both of the expected costs increase, and therefore ETCIC does
as well.
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Fig. 7 Value of flexible capacity versus fixed costs

In order to investigate the effect of the fixed cost of production, K p, we vary K p

between 0 and 60. We also vary the values of the fixed cost of contingent capacity
(Kc) between 0 and 40, to illustrate the corresponding result in Sect. 5.1. Figure 7
depicts that V FC increases as K p increases because flexibility becomes more crucial
as initiating production becomes more costly.

5.4 Effects of maximum contingent capacity

As the maximum contingent capacity that can be acquired (V ) increases, the value of
flexibility also increases. This holds also for %VFC, as demonstrated in Fig. 8. We
observe that introducing the use of contingent capacity has an immediate effect of
decreasing overall operating costs considerably up to a certain point—the impact and
duration of this effect depends on the permanent capacity size, as well as the values
of other problem parameters—but above some value of V the value added by any
additional contingent capacity becomes negligible. The marginal value of contingent
capacity decreases as the size of the permanent capacity increases, because in such a
case more production can be handled by permanent resources.

In the context of overtime production, V might be defined as a percentage of U , as
stated in Sect. 3. For low values of permanent capacity, overtime production may be
very valuable even when moderate proportions of the permanent resources are used for
overtime production. In the problem instances presented in Fig. 8 for example, when
U = 8 we observe that there exists a saving potential of 44% when V is set as 25% of
U throughout the planning horizon. Even when operating with a permanent capacity
that is sufficient to meet the expected demand, we observe in this particular example
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Fig. 8 % Value of flexible capacity versus maximum contingent capacity under different permanent capac-
ity levels

that a 31% reduction in the expected operating costs is possible by utilizing 30% of the
permanent resources for overtime production. Finally, we note that even though the
value of overtime becomes less significant for larger U values, considerable savings
can still be obtained even with low V values and a positive fixed cost associated with
utilizing contingent capacity (%VFC is 9% when U = 11 and V = 2 in Fig. 8).

6 Conclusions and future research

In this paper, we consider the integrated problem of inventory and flexible capacity
management under non-stationary stochastic demand with the possibility of positive
fixed costs, both for initiating production and ordering contingent capacity. While a
workforce capacity jargon is adopted in some parts of the paper, the model can be
applied to any other bottleneck resource that defines the capacity as well, when there
exists the option of increasing this capacity by making use of contingent resources.
The amount of contingent capacity that can be acquired is allowed to be bounded
from above, in order to represent situations such as limited availability of temporary
workers supplied by the external labor supply agency, limited working space, and
overtime production capacity. In that setting, our model and analysis also provide
insights on—for example—the optimal usage of overtime production coupled with
inventory management.

For the environment that we consider, the equivalence of this problem with the clas-
sical capacitated production/inventory problem which has a specified production cost
function is shown. When the setup costs are negligible, the optimal policy depends
on the level of starting inventory and it is a variant of base-stock policy, in the sense
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that there are two order-up-to levels in each period: one of them can be attained by
utilizing contingent capacity, and the other can be attained by utilizing only perma-
nent capacity. There is also a region of starting inventory level where full permanent
capacity and no contingent capacity should be utilized.

When the fixed costs are positive, the optimal policy for the single-period problem
is shown to be a variant of (s, S) type policies where the policy parameters are func-
tions of the starting inventory level and available capacity limits. With the help of a
problem instance, it is shown that the optimal policy for the single-period problem,
as well as the monotonic relationship between the starting inventory level and the
optimal production quantity, ceases to hold for the multi-period problem. This does
not mean that the solution of the multi-period problem cannot be characterized; that
is still an open question. Nevertheless, even a famous special case of this problem, the
capacitated multi-period inventory/production problem with positive fixed cost, has
not yet been completely characterized, which makes it likely that the optimal policy
does not have a very simple structure.

Our computational analyses point out important directions for the use of flexibility.
Flexibility turns out to be very important for some values of problem parameters: (i)
lower costs of contingent capacity, (ii) higher costs of backorders, (iii) higher fixed
costs of production, (iv) lower levels of permanent capacity, and (v) higher levels of
maximum contingent capacity. Moreover, for businesses with demand volatility, the
value of flexibility might be extremely high even under abundant permanent capacity
levels. Under such circumstances, businesses should pursue establishing long-term
contractual relations with third-party contingent capacity providers (such as external
labor supply agencies). Such long-term agreements would bring significant operational
cost savings. On the other hand, the opposite range of parameters yield relatively low
value for flexibility, which is also very important from a managerial point of view.
Under such circumstances, there does not exist enough motivation to invest in capac-
ity flexibility, since the existing resources are sufficient for reasonable management
of operations.

This research can be extended in several ways. One way to enrich the model is
to relax our assumptions on the capacity usage, such as introducing uncertainty on
contingent and/or permanent capacity, as well as to relax our assumption of zero lead
times. Other extension possibilities are investigating interactions with material avail-
ability; determining the optimal permanent and maximum contingent capacity levels
at the beginning of the problem horizon (given that reserving contingent capacity
comes with a cost); incorporating intentional changes in capacity levels in strategic,
tactical, or even operational level; exploring the structure of the optimal solution under
seasonal demand; and developing an efficient heuristic for the multi-period problem
with fixed costs.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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Appendix

Proof of Theorem 1 First, we need the following preliminary results for the proof:

Lemma 1 yc
T ≤ y p

T .

Proof yc
T ≤ y p

T since b−cc
h+b ≤ b

h+b and GT (y) is a non-decreasing function. 	


Lemma 2 JT (y|x) is convex in y for any value of x. Moreover, y∗
T is the minimizer

of JT (y|x) where

y∗
T =

⎧
⎪⎨

⎪⎩

yc
T if x ≤ yc

T − U

x + U if yc
T − U ≤ x ≤ y p

T − U

y p
T if y p

T − U ≤ x

.

Proof First note that J p
T (y) = J c

T (y|x) at y = x + U . Moreover,
dJ p

T (y)

dy
= L ′

T (y) ≤
L ′

T (y) + cc = dJ c
T (y|x)

dy
for any y. For y ≤ x + U , JT (y|x) is convex because J p

T (y)

is convex. At y = x + U , JT (y|x) takes the form of another convex function J c
T (y|x)

and since the derivative of the new function is greater than that of the previous, the
convexity is not violated after the change of shape.

By using the definition and the convexity of JT (y|x) and Lemma 1, it can be
observed that the function takes different forms in intervals x ≤ yc

T − U , yc
T − U ≤

x ≤ y p
T − U , and y p

T − U ≤ x and the minimizer of the function in each of these
intervals are yc

T , x + U , and y p
T respectively. 	


Recall that fT (x) = Ucp + miny:x≤y≤x+U+V {JT (y|x)}. Since Ucp is a constant
term we suppress it from the definition of ft (x) in what follows. Hence, fT (x) is
determined by minimizing JT (y|x) over x ≤ y ≤ x + U + V . Therefore, due to
Lemma 2 and the boundaries of the optimization, the optimal policy for the last period
is as follows.

y∗
T (x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x + U + V if x ≤ yc
T − U − V

yc
T if yc

T − U − V ≤ x ≤ yc
T − U

x + U if yc
T − U ≤ x ≤ y p

T − U

y p
T if y p

T − U ≤ x ≤ y p
T

x if y p
T ≤ x .

In order this policy to hold for all other periods in the planning horizon, similar
results as in Lemma 1 and 2 must hold for each of these periods: (i) Jt (y|x) is convex
over y for a given x , and (ii) yc

t ≤ y p
t for every period t ≤ T .
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By using the optimal policy of period T , it can be shown that

fT (x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

J c
T (x + U + V |x) = ccV + LT (x + U + V ) if x ≤ yc

T − U − V

J c
T (yc

T |x) = cc(yc
T − x − U ) + LT (yc

T ) if yc
T − U − V ≤ x ≤ yc

T − U

J p
T (x + U ) = LT (x + U ) if yc

T − U ≤ x ≤ y p
T − U

J p
T (y p

T ) = LT (y p
T ) if y p

T − U ≤ x ≤ y p
T

J p
T (x) = LT (x) if y p

T ≤ x,

and

d fT (x)

dx
=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

L ′
T (x + U + V ) if x ≤ yc

T − U − V

−cc if yc
T − U − V ≤ x ≤ yc

T − U

L ′
T (x + U ) if yc

T − U ≤ x ≤ y p
T − U

0 if y p
T − U ≤ x ≤ y p

T

L ′
T (x) if y p

T ≤ x .

We first note that fT (x) is continuous. Next we check the continuity of d fT (x)/dx . We
have limx→(yc

T −U−V )− d fT (x)/dx = L ′
T (yc

T ) = (h +b)GT (yc
T )−b = −cc, because

yc
T = G−1

T

(
b−cc
h+b

)
. We also have limx→(yc

T −U )+ d fT (x)/dx = L ′
T (yc

T ) = −cc.

Finally, limx→(y p
T −U )− d fT (x)/dx = L ′

T (y p
T ) = (h + b)GT (y p

T ) − b = 0, because

y p
T = G−1

T

(
b

h+b

)
, and similarly, limx→(y p

T )+ d fT (x)/dx = L ′
T (y p

T ) = 0. Since L

is convex and is minimized at y p
T , we conclude that d fT (x)/dx is continuous and

non-decreasing, and consequently the functions fT (x) and E[ fT (x)] are convex in
x . Starting with period T and assuming that the optimal policy and the convexity
of E[ fk(x)] hold for all periods k = T, T − 1, . . . , t + 1, it follows that Jt (y|x) is
convex over y for a given x . Let j (y) = dJ p

t (y)/dy then y p
t = j−1(0). Moreover,

yc
t = j−1(−cc) since dJ c

t (y|xt )/dy = j (y) + cc. Hence, due to the convexity of
function J p

t , we have yc
t ≤ y p

t and

y∗
t (xt ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

xt + U + V if xt ≤ yc
t − U − V

yc
t if yc

t − U − V ≤ xt ≤ yc
t − U

xt + U if yc
t − U ≤ xt ≤ y p

t − U

y p
t if y p

t − U ≤ xt ≤ y p
t

xt if y p
t ≤ xt .

To conclude the proof, note that

ft (xt ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

J c
t (xt + U + V |xt ) = ccV + J p

t (xt + U + V ) if xt ≤ yc
t − U − V

J c
t (yc

t |xt ) = cc(yc
t − xt − U ) + J p

t (yc
t ) if yc

t −U −V ≤ xt ≤ yc
t −U

J p
t (xt + U ) if yc

t − U ≤ xt ≤ y p
t − U

J p
t (y p

t ) if y p
t − U ≤ xt ≤ y p

t

J p
t (xt ) if y p

t ≤ xt ,
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and

d ft (xt )

dxt
=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

j (xt + U + V ) if xt ≤ yc
t − U − V

−cc if yc
t − U − V ≤ xt ≤ yc

t − U

j (xt + U ) if yc
t − U ≤ xt ≤ y p

t − U

0 if y p
t − U ≤ xt ≤ y p

t

j (xt ) if y p
t ≤ xt .

We note that limxt →(yc
t −U−V )− d ft (xt )/dxt = j (yc

t ) = j ( j−1(−cc)) = −cc, and
similarly, limxt →(yc

t −U )+ d ft (xt )/dxt = j (yc
t )= −cc. Finally, limxt →(y p

t −U )− d ft (x)/

dx = j (y p
t ) = j ( j−1(0)) = 0, and limxt →(y p

t )+ d ft (x)/dx = j (y p
t ) = 0. Hence,

ft (xt ) is a convex function over xt . This completes the proof. 	


Proof of Theorem 2 Ucp is a constant term. Note that su(x) ≤ x + U by definition
of su(x). We need to examine the following cases on the value of x .
Case I: x ≤ yc

T − U − V and su(x) ≤ sv(x) ≤ x + U + V
JT (y|x) is non-increasing over x ≤ y ≤ x + U + V since x + U + V ≤ yc

T
which is the minimizer of J c

T (y|x) by Lemma 2. Therefore, the optimal course of
action is either not to produce, to produce with full permanent capacity, or to produce
with full permanent and contingent capacity. Since su(x) ≤ sv(x) ≤ x + U + V ,
J p

T (x + U ) + K p = JT (su(x)|x) ≥ JT (sv(x)|x) = J c
T (x + U + V |x) + K p + Kc.

Hence, if production is viable, then it must be up to x + U + V . If x ≤ sv(x) = s(x),
JT (x |x) ≥ JT (sv(x)|x) = J c

T (x + U + V |x) + K p + Kc by the definition of sv(x).
Therefore, y∗

T (x) = x + U + V = S(x) since s(x) = sv(x). If x > sv(x) = s(x),
JT (sv(x)|x) ≥ JT (x |x) and therefore y∗

T (x) = x .
Case II: x ≤ yc

T − U − V and sv(x) ≤ su(x) ≤ x + U + V
JT (y|x) is non-increasing over x ≤ y ≤ x + U + V in this case, too. Since

sv(x) ≤ su(x) ≤ x + U + V , J c
T (x + U + V |x) + K p + Kc = JT (sv(x)|x) ≥

JT (su(x)|x) = J p
T (x + U ) + K p. Hence, if production is viable, then it must be

limited to x + U ; ordering contingent labor does not pay off. If x ≤ su(x) = s(x),
JT (x |x) ≥ JT (su(x)|x) = JT (x + U |x) + K p by the definition of su(x). Therefore,
y∗

T (x) = x + U = S(x) since s(x) = su(x). If x > su(x) = s(x), JT (su(x)|x) ≥
JT (x |x) and therefore y∗

T (x) = x .
Case III: x + U ≤ yc

T and sc(x) ≤ su(x) ≤ x + U
JT (y|x) is minimized at yc

T by Lemma 2 and therefore is non-increasing over x ≤
y ≤ yc

T . Since sc(x) ≤ su(x), J c
T (yc

T |x)+ K p + Kc = JT (sc(x)|x) ≥ JT (su(x)|x) =
J p

T (x + U ) + K p. Hence, if production is viable, then it must be limited to x + U ;
ordering contingent capacity does not pay off. If x ≤ su(x) = s(x), JT (x |x) ≥
JT (su(x)|x) = J p

T (x + U |x) + K p by the definition of su(x). Therefore, y∗
T (x) =

x + U = S(x) since s(x) = su(x). If x ≥ su(x) = s(x), JT (su(x)|x) ≥ JT (x |x) and
therefore y∗

T (x) = x .
Case IV: x + U ≤ yc

T and su(x) ≤ sc(x)

JT (y|x) is minimized at yc
T by Lemma 2 and therefore is non-increasing over

x ≤ y ≤ yc
T . As su(x) ≤ sc(x), J p

T (x + U ) + K p = JT (su(x)|x) ≥ JT (sc(x)|x) =
J c

T (yc
T |x) + K p + Kc. Hence, if production is viable, then it must be up to yc

T .
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If x ≤ sc(x) = s(x), JT (x |x) ≥ JT (sc(x)|x) = JT (yc
T |x) + K p by the

definition of sc(x). Therefore, y∗
T (x) = yc

T = S(x) since s(x) = sc(x). If x ≥
sc(x) = s(x), JT (sc(x)|x) ≥ JT (x |x) and therefore y∗

T (x) = x .
Case V: yc

T ≤ x + U ≤ y p
T

JT (y|x) is minimized at x + U by Lemma 2 and therefore is non-increasing over
x ≤ y ≤ x + U . If x ≤ su(x) = s(x) ≤ x + U , JT (x |x) ≥ JT (su(x)|x) =
J p

T (x + U ) + K p by the definition of su(x). Therefore, y∗
T (x) = x + U = S(x) since

s(x) = su(x). If x ≥ su(x) = s(x) then y∗
T (x) = x .

Case VI: y p
T ≤ x + U

JT (y|x) is minimized at y p
T by Lemma 2 and therefore is non-increasing over

x ≤ y ≤ y p
T . If x ≤ s p = s(x) ≤ y p

T , then JT (x |x) ≥ JT (s p|x) = J p
T (y p

T ) + K p by
the definition of s p . Therefore, y∗

T (x) = y p
T = S(x) since s(x) = s p. If x ≥ s p = s(x)

then y∗
T (x) = x . 	


Proof of Theorem 3 First note that JT (y|x) ≥ JT (y|x +�) for all y and � > 0, since

• For y < x + U : JT (y|x) = JT (y|x + �)

• For x + U ≤ y < x + � + U : JT (y|x) = J p
T (y) + cc(y − x − U ) ≥ J p

T (y) =
JT (y|x + �)

• For x + � + U ≤ y: JT (y|x) = J p
T (y) + cc(y − x − U ) ≥ J p

T (y) + cc(y − x −
� − U ) = JT (y|x + �)

We need to examine the following cases on the values of x and s(x):
Case I su(x) ≤ sv(x), x + U + V ≤ yc

T ≤ y p
T

Let � > 0 be such that x +�+U + V ≤ yc
T . JT (sv(x)|x) = JT (x +U + V |x)+

K p+Kc ≥ JT (x+�+U +V |x)+K p+Kc ≥ JT (x+�+U +V |x+�)+K p+Kc =
JT (sv(x + �)|x + �). Therefore

JT (sv(x)|x) ≥ JT (sv(x + �)|x + �).

We have four possible cases for the values of sv(x) and sv(x + �) with respect to
x + U and x + � + U :
Case I-a sv(x) ≤ x + U, sv(x + �) ≤ x + � + U

JT (sv(x)|x) = J p
T (sv(x)) ≥ JT (sv(x + �)|x + �) = J p

T (sv(x + �)) since J p
T is

convex and x ≤ x + � ≤ y p
T . This implies that sv(x + �) ≥ sv(x).

Case I-b sv(x) ≤ x + U, sv(x + �) ≥ x + � + U
sv(x + �) ≥ sv(x) directly follows.

Case I-c sv(x) ≥ x + U, sv(x + �) ≥ x + � + U
Let s′ = min{s : JT (s|x + �) = JT (x + U + V |x + �) + K p + Kc}. Since

JT (y|x) = JT (y|x + �) + cc� for all y ≥ x + �, we must have s′ = sv(x). By
noting that x + � + U + V ≤ yc

T ,

JT (x + � + U + V |x + �) + K p + Kc ≤ JT (x + U + V |x + �) + K p + Kc

JT (sv(x + �)|x + �) ≤ JT (s′|x + �)

sv(x + �) ≥ s′ = sv(x).

Case I-d: sv(x) ≥ x + U, sv(x + �) ≤ x + � + U
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One can show that s′ ≤ sv(x + �) by following the steps of Case I-c. We have
s′ ≥ sv(x) since J p

T (y) ≥ J c
T (y|x) for all y ≤ x +U and since J p

T and J c
T are convex.

Then the result follows.
Case II sv(x) ≤ su(x), x + U ≤ yc

T
s(x) = su(x) ≤ x + U and su(x) ≤ x + U by definition. J p

T is convex and
minimized at y p

T . For x + U < x + U + � ≤ x + U + V ≤ yc
T ≤ y p

T , we have

J p
T (x + U ) + K p ≥ J p

T (x + U + �) + K p

JT (x + U |x) + K p ≥ JT (x + � + U |x + �)

JT (su(x)|x) ≥ JT (su(x + �)|x + �)

su(x) ≤ su(x + �)

since JT (su(x)|x) = JT (su(x)|x + �).
Case III su(x) ≤ sc(x), x + U ≤ yc

T
s(x) = sc(x). This case can be proved similar to Case I.

Case IV sc(x) ≤ su(x), x + U ≤ yc
T

s(x) = su(x). This case can be proved similar to Case II.
Case V yc

T ≤ x + U ≤ y p
T

s(x) = su(x). This case can be proved similar to Case II.
Case VI y p

T ≤ x + U
s p is independent of x therefore result directly follows.
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