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Abstract: In a manufacturing system with flexible capacity, inventory management can
be coupled with capacity management in order to handle fluctuations in demand more ef-
fectively. A typical example is the effective use of temporary workforce. In this paper,
we discuss an integrated model for inventory and flexible capacity management under non-
stationary stochastic demand with the possibility of positive set-up costs, both for initiating
production and ordering contingent capacity. We analyze the characteristics of the optimal
policies for the integrated problem. We also evaluate the value of utilizing flexible capacity
under different settings, which enable us to develop managerial insights.

Keywords: Inventory; Production; Stochastic Processes; Capacity Management; Flexible

Capacity

1. Introduction

A crucial problem that manufacturing companies face is how to cope with volatility in de-

mand. For make-to-stock environments, holding safety stocks is the traditional remedy for

handling the stochasticity in demand. If there is non-stationarity in demand, such as season-

ality, then adjusting production capacity dynamically is another possible tool. While there

is an extensive amount of literature on both of these measures, our aim is to contribute to

the relatively limited research that considers both at the same time, which may be necessary

especially if the demand is both non-stationary and stochastic. Consequently, in this paper

we consider a periodic review make-to-stock production environment under non-stationary

stochastic demand.
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In most of the traditional production/inventory literature, either an infinite production

capacity is assumed or a given finite capacity is considered as a constraint rather than a

decision variable. We relax this assumption in the sense that the flexible capacity level in

each period is to be optimized, as well as the amount of production. Capacity can be defined

as the total productive capability of all productive resources utilized, such as workforce

and machinery. These productive resources can be permanent or contingent. We define

permanent capacity as the maximum amount of production possible in regular work time

by utilizing internal resources of the company such as existing workforce level on the steady

payroll or the machinery owned or leased by the company. Total capacity can be increased

temporarily by acquiring contingent resources, which can be internal or external, such as

hiring temporary workers from external labor supply agencies, subcontracting, overtime

production, renting work stations, and so on. We refer to this additional capacity acquired

temporarily as the contingent capacity. Flexible capacity management refers to adjusting

the total production capacity in any period with the option of utilizing contingent resources

on top of the permanent ones.

The capacity decisions can be in all hierarchies of decision making: strategic, tactical,

and operational. Examples of such decisions would be, determining how many production

facilities to operate, determining the permanent capacity of a facility, and making contingent

capacity adjustments, respectively. Our focus is on the operational level. For the ease

of exposition in some parts we refer to the workforce capacity setting, not to mean that

our analysis is confined to that environment. Consequently, the problem we consider can

be viewed as one where the production is mostly determined by the workforce size. This

workforce size is flexible, in the sense that temporary (contingent) workers can be hired in

any period and they are paid only for the periods they work. The productivity of contingent

workers are allowed to be different than that of permanent workers in our model. The size

of the permanent workforce is assumed to be pre-determined in the tactical level and hence

considered as fixed for a given planning horizon. Our model also allows for the incorporation

of set-up costs associated with (i) initiating production in each period (production set-up

cost) and (ii) ordering contingent capacity.

In this paper, we first show that the integrated flexible capacity and inventory man-

agement problem that we consider can be transformed into a typical production/inventory

problem with neither concave nor convex production costs. Then we characterize the single

period optimal ordering policy of such problems completely and elaborate on the general
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characteristics of the multi-period problem. Finally, we develop several managerial insights

on the value of utilizing flexible capacity, determining the range of problem parameters where

it is of more value.

The rest of the paper is organized as follows. We present a review of relevant literature in

Section 2 and present our dynamic programming model in Section 3. The optimal policy for

the integrated problem is discussed in Section 4 and the value of utilizing flexible capacity is

analyzed in Section 5. We summarize our conclusions and suggest some possible extensions

in Section 6.

2. Related Literature

The problem that we deal with have interactions with a number of related fields. In spe-

cific, the following three fields have the closest connection: (i) integrated production/capacity

management, (ii) workforce planning and flexibility, and (iii) capacitated production/inventory

models. Instead of providing a detailed literature survey on each of these fields, we cite ex-

amples of related work from each of them and discuss some of the similarities and differences

between those problems and the one that we consider.

An excellent survey of strategic capacity management problems mainly focusing on the

capacity expansion decisions is presented by Van Mieghem (2003). The author explains

prominent issues in formulating and solving various capacity management problems.

Atamtürk and Hochbaum (2001) deal with an integrated capacity and inventory manage-

ment problem under a finite planning horizon and deterministic demand where trade-offs be-

tween capacity expansions, subcontracting, production, and inventory holding are exploited.

Angelus and Porteus (2002) also deal with an integrated problem for a short-life-cycle prod-

uct where the demand has a stochastically increasing and then decreasing structure. Authors

show that the optimal capacity level follows a target interval policy. In another work that

deals with integrated problems, Dellaert and de Kok (2004) show that integrated capacity

and inventory management approaches outperform decoupled approaches.

Hu et al (2004) deal with an environment similar to ours: There is a fixed permanent

production capacity, but it can temporarily be increased by using contingent capacity. Unlike

ours, the problem is modelled on a continuous time framework under a demand rate that is

Markov-modulated, and no setup costs are considered. Tan and Gershwin (2004) also deal

with a similar problem with a similar approach. The differences are the existence of several
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subcontracting opportunities with different cost and capacity structures and the demand

being dependent on the lead time distribution during out of stock periods.

In the workforce planning and flexibility field, Holt et al. (1960) in their seminal work

present models that exploit the trade-off between keeping large sized permanent workforce

levels capable of satisfying peak season demands and frequent adjustment of the workforce

level to cope with fluctuations. Indeed, this very idea of aggregate production planning

problem constitutes the essence of our problem too, nevertheless we consider non-stationary

stochastic demand, unlike the deterministic demand assumption of aggregate production

planning models. Wild and Schneeweiss (1993) analyze and compare four “instruments”

to cope with fluctuating demand when the capacity is defined in terms of work force level:

variation of monthly working time, use of overtime, employment of temporary workers, and

leasing a work force. A hierarchical model based on dynamic programming is presented for

making rational decisions on the selective use of these instruments.

Milner and Pinker (2001) deal with the design of contracts between firms and external

labor supply agencies for hiring long term and temporary workers under demand and supply

uncertainty in a single period environment. In a related work, Pinker and Larson (2003)

consider the problem of managing permanent and contingent workforce level under uncertain

demand in a finite planning horizon where inventory holding is not allowed. The sizes of

regular and temporary labor are decision variables that are fixed throughout the planning

horizon, but the capacity level may be adjusted by setting the number of shifts for each class

of workers.

The papers by Federgruen and Zipkin (1986) and Kapuscinski and Tayur (1998) are

two examples of the research stream on capacitated production/inventory problems with

stochastic demand, where no setup costs of production exist. In this case, it is shown that

base stock type policies are optimal. Gallego and Scheller-Wolf (2000) consider the setup

cost of production under a similar environment and characterize the optimal policy partially.

Our model is an extension and a generalization of this stream of research, in which we provide

the explicit solution of a single period problem.

3. Model Formulation

In this section, we present a finite horizon dynamic programming model to formulate the

problem under consideration. Unmet demand is assumed to be fully backlogged. The rele-
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vant costs in our environment are inventory holding and backorder costs, unit cost of perma-

nent and contingent capacity, set-up cost of production, and fixed cost of ordering contingent

capacity, all of which are non-negative. We assume that there is an infinite supply of contin-

gent workers, and that the lead time of production and acquiring contingent capacity can be

neglected. The notation is introduced as need arises, but we summarize our major notation

in Table 1 for the ease of reference.

Table 1: Summary of Notation

T : Number of periods in the planning horizon
U : Size of available permanent capacity

Kp : Fixed cost of production
Kc : Fixed cost of ordering contingent capacity
cp : Unit cost of permanent capacity per period
cc : Unit cost of contingent capacity per period
h : Inventory holding cost per unit per period
b : Penalty cost per unit of backorder per period
α : Discounting factor (0 < α ≤ 1)
st : Size of contingent capacity ordered in period t
Qt : Number of items produced in period t
Wt : Random variable denoting the demand in period t

Gt(w) : Distribution function of Wt

xt : Inventory position at the beginning of period t before ordering
yt : Inventory position in period t after ordering
xu

t : Inventory position in period t after full permanent capacity and
no contingent capacity are used for production (xu

t = xt + U)
ft(xt) : Minimum total expected cost of operating the system

in periods t, t + 1, ..., T , given the system state xt

γ : productivity of contingent resources relative to the permanent resources

Changing the level of permanent capacity as a means of coping with demand fluctua-

tions, such as hiring and firing permanent workers, is not only very costly in general, but

it may also have many negative impacts on the company, especially if the demand is highly

variable. In case of labor capacity, the social and motivational effects of frequent hiring and

firing makes this tool even less attractive. Utilizing flexible capacity, such as hiring tempo-

rary workers from external labor supply agencies, is a means of overcoming these issues, and

we consider this as one of the two main tools of coping with fluctuating demand, along with

holding inventory. Yet, long-term changes in the state of the world can make permanent

capacity changes unavoidable. Consequently, we consider the determination of the perma-

5



nent capacity level as a tactical decision that is made at the beginning of a finite horizon

and not changed until the end of the horizon. This decision is kept out of the scope of this

study since we focus only on the operational decisions. Therefore, a finite horizon dynamic

programming model becomes an appropriate choice to formulate this problem for a given

permanent capacity level.

We consider a production cost component which is a linear function of permanent capacity

in order to represent the costs that do not depend on the production quantity (even when

there is no production), such as the salaries of permanent workers. That is, each unit of

permanent capacity costs cp per period, and the total cost of permanent capacity per period

is U ∗ cp, for a permanent capacity of size U , independent of the production quantity. We do

not consider material-related costs in our analysis. In order to synchronize the production

quantity with the number of workers, we redefine the “unit production” as the number

of actual units that an average permanent worker can produce; that is, the production

capacity due to U permanent workers is U “unit”s per period. We also define the cost of

production by temporary workers in the same unit basis in the following way. Let c′c be the

hiring cost of a temporary labor per period, and let c′′c denote all other relevant variable

costs associated with production by temporary workers per period. It is possible that the

productivity rates of permanent and temporary workers are different. Let γ be the average

productivity rate of temporary workers, relative to the productivity of permanent workers;

that is, each temporary worker produces γ units per period. Assuming that this rate remains

approximately the same in time, the unit production cost by temporary workers, cc, can be

written as cc = (c′c + c′′c )/γ. It is likely that 0 < γ < 1, but the model holds for any γ > 0.

For the sake of generality, we allow for positive fixed costs, both for production and

contingent capacity ordering. Let Kp denote the production set-up cost and Kc denote the

fixed cost of ordering contingent capacity. Kp is charged whenever the production is initiated,

even if the permanent workforce size is zero and all production is due to temporary workers.

On the other hand, Kc is charged only when temporary workers are ordered, independent

of the amount. Fixed costs of contacting external labor supply agencies and training costs

may be among the drivers of Kc. We note that it is more likely to have Kp > Kc, but the

model holds for all values of Kp and Kc.

Under these settings, it turns out that the production quantity of a period, Qt, is sufficient

to determine the number of temporary workers to be ordered in that period, st, for any given

level of permanent capacity, via st = [(Qt − U)+/γ], ignoring integrality, where (·)+ denotes
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the value of the argument inside if it is positive and assumes a value of zero otherwise.

Consequently, the problem translates into the classical production/inventory problem with

a piecewise linear production cost (made up of labor costs), which is neither convex nor

concave under positive fixed costs. See Figure 1 for an illustration. Note that when Kp and

Kc are both zero, this function is convex.

Figure 1: Production Cost Function Under Positive Set-up Costs
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The order of events is as follows. At the beginning of each period t, the initial inventory

level, xt is observed, the production decision is made and the inventory level is raised to yt

by utilizing the necessary capacity means; that is, if yt ≤ xt + U = xu
t then only permanent

capacity is utilized, otherwise a contingent capacity of size st = [(yt−xu
t )

+/γ] is hired on top

of full permanent capacity usage. At the end of the period, the demand is met/backlogged.

Consequently, denoting the minimum cost of operating the system from the beginning of

period t until the end of the planning horizon as ft(xt), we use the following dynamic

programming formulation to solve the problem.

(CIMP): ft(xt) = Ucp + min
xt≤yt

{

Kpδ(yt − xt) + Kcδ(yt − xu
t ) + [yt − xu

t ]
+cc

+Lt(yt) + αE [ft+1(yt − Wt)]} for t = 1, 2, ..., T

where Lt(yt) = h
∫ yt

0 (yt − w)dGt(w) + b
∫∞

yt
(w − yt)dGt(w) is the regular loss function, and

δ(·) is the function that attains the value 1 if its argument is positive, and zero otherwise.

We assume the ending condition to be fT+1(xT+1) = 0. We note that the optimal contingent
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capacity usage is independent of cp, because the permanent capacity is fixed and cannot be

changed, and hence the costs of holding that capacity is “sunk”.

Remark 1 When Kp = Kc = 0 and cc → ∞, CIMP boils down to a capacitated produc-

tion/inventory problem. Similarly, when Kp > 0 and either Kc → ∞ or cc → ∞, CIMP

boils down to a capacitated production/inventory problem with production setup costs.

4. Integrated Flexible Capacity and Inventory Man-

agement

The characteristics of the problem and the optimal solution show significant differences

depending on whether the set-up costs are strictly positive or not. Therefore, we analyse

those two cases separately in the following two subsections.

4.1 Analysis with no Set-up Costs

As discussed in Section 3, the special case of no set-up costs translates into the classical pro-

duction/inventory problem with piecewise linear, convex production cost and linear holding

and backordering costs. The optimal policy of the multi-period production/inventory prob-

lem with a (strictly) convex production cost function is characterized in Karlin (1958) as a

modified version of the order-up-to type policy, where the order-up-to level (which is not

necessarily equal to the reorder level and can be less than that) is a function of the inventory

level. It is also shown that as the initial inventory level increases, the quantity ordered de-

creases while the order-up-to level increases. For the single-period problem with a piecewise

linear (hence non-strict) convex production cost, Porteus (1990) discusses that the optimal

policy is of order-up-to type, where the order-up-to level is piecewise linear increasing in ini-

tial inventory level. He refers to this policy as a “finite generalized base stock policy”, since

there are a finite number of distinct base stock levels. For the single-period problem with

piecewise linear non-convex production cost, he suggests evaluating the optimal solutions

within linear regions for a given initial inventory level (x) and picking the best among them,

because of the difficulty of obtaining an explicit solution for all x due to the dependence of

the optimal ordering policies on x.

Let Jp
t (y) = Lt(y)+αE [ft+1(y − Wt)] and J c

t (y|x) = Jp
t (y)+cc(y−xu), where xu = x+U .
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Then the problem can be stated as

(CIMP-NS): ft(xt) = Ucp + min
xt≤yt

{Jt(yt|xt)}

where

Jt(y|x) =

{

Jp
t (y) if y ≤ xu

J c
t (y|x) if y ≥ xu

for t = 1, 2, . . . , T . Recalling that fT+1(x) = 0, Jp
T (y) is convex in y ∈ < since the loss

function LT (y) is a convex function. J c
T (y|x) is also a convex function in y ∈ < for a given

value of x. Hence, the first order condition is sufficient for the minimization, where

dJp
T (y)

dy
= (h + b)GT (y) − b and

dJ c
T (y|x)

dy
= (h + b)GT (y) − b + cc.

Let yp
t and yc

t be the minimizers of the functions Jp
t (y) and J c

t (y|x), respectively, for t =

1, 2, . . . , T . Then, assuming that G is an invertible function, we have

yp
T = G−1

T

(

b

h + b

)

and yc
T = G−1

T

(

b − cc

h + b

)

.

Theorem 1 Optimal ordering policy of CIMP-NS at any period t = 1, 2, . . . , T is of state-

dependent order-up-to type, where the optimal order-up-to level, y∗
t (xt), is

y∗
t (xt) =



















yc
t if xt ≤ yc

t − U
xt + U if yc

t − U ≤ xt ≤ yp
t − U

yp
t if yp

t − U ≤ xt ≤ yp
t

xt if yp
t ≤ xt

.

Proof : See Appendix.

We note that although yc
t and yp

t are independent of xt, y∗
t (xt) is a function of xt.

Property 1 The optimal production quantity in any given period is a non-increasing func-

tion of the starting inventory level. Similarly, the optimal order-up-to level in any given

period is a non-decreasing function of the starting inventory level.

This monotonic relation is also discussed by Porteus (1990) and is illustrated in Figure

2 for a single period problem instance.

Property 2 The two critical order-up-to points, yc
t and yp

t , of CIMP-NS have a non-increasing

structure for a stationary demand stream as the number of periods remaining in the planning

horizon decreases.
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Figure 2: Optimal Production Quantities and Order-up-to Levels vs Starting Inventory
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Karlin (1958) and Porteus (1990) present general discussion of similar results for various

production/inventory problems. Figure 3 shows this behavior for two problem instances:

one with a stationary demand and the other with a periodic demand of two seasons.

4.2 Analysis with Set-up Costs

When the setup costs in the problem, Kp and Kc, are positive, CIMP translates into a finite

horizon production/inventory problem with neither concave nor convex production costs. In

what follows, we characterize the optimal ordering policies for the last period of the planning

horizon (single period problem) and discuss the complications of deriving general optimal

policies for multiple periods.

We first note that there exist unique numbers sc(x), su(x), and sp(x) for a given value of

x, due to the convexity of the functions JT (y|x) and Jp
T (y), such that
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Figure 3: Optimal Control Parameters vs Time for Stationary and Non-stationary Demand
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sc(x) = min{s : JT (s|x) = J c
T (yc

T |x) + Kp + Kc},

su(x) = min{s : Jp
T (s) = Jp

T (x + U) + Kp},

sp(x) = min{s : Jp
T (s) = Jp

T (yp
T ) + Kp}.

In order to simplify the exposition of the optimal policy in the last period, we introduce two

auxiliary functions, s(x) and S(x), as follows.

s(x) =











max{su(x), sc(x)} if xu ≤ yc
T

su(x) if yc
T ≤ xu ≤ yp

T

sp(x) if yp
T ≤ xu

S(x) =











yc
T if s(x) = sc(x)

xu if s(x) = su(x)
yp

T if s(x) = sp(x)

Theorem 2 The optimal ordering policy of the last period is

y∗
T (x) =

{

S(x) if x ≤ s(x)
x otherwise

.

Proof : See Appendix.

In this optimal policy, there exists a state dependent reorder level which is a function

of the starting inventory level, x. This function, s(x), takes the value of one of the critical

levels sc(x), su(x), and sp(x), where production does not pay off above that level due to

the existence of setup costs. Critical levels sc(x), su(x), and sp(x) can be considered as the
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“reorder” levels for production with contingent capacity, production with full capacity, and

production with idle capacity, respectively. Therefore, if the starting inventory level is below

the reorder level, the optimal order-up-to level is given by yc
T , xu, or yp

T depending on the

value that s(x) takes, either sc(x), or su(x), or sp(x), respectively. Otherwise, no orders are

placed.

The following result characterizes the structure of the reorder level function with respect

to the starting inventory level, x.

Theorem 3 s(x) is non-decreasing in x.

Proof : See Appendix.

The optimal policy of the last period cannot simply be generalized to multiple periods.

Such a generalization would require the convexity -or quasiconvexity- of the function Jt(y|x)

over y for every period t. However, while fT (x) is a quasiconvex function, its expecta-

tion (E[fT (y − WT )]) is not necessarily quasiconvex. Similarly, even if E[fT (y − WT )] is

quasiconvex, JT−1(y|x) is not necessarily quasiconvex, since the summation of convex and

quasiconvex functions, as well as the convex combinations of quasiconvex functions may fail

to be quasiconvex. Therefore, regular inductive arguments do not hold. Figure 4 illustrates

this point for a particular problem instance. The solid line in this figure is the graph of

fT (x), which is quasiconvex, and the dashed line is the graph of fT−1(x), which fails to be

quasiconvex, because the function increases in the region −30 ≤ x ≤ −20.

Gallego and Scheller-Wolf (2000) consider a capacitated production/inventory problem

under setup costs of production, which is a special case of CIMP as mentioned in Section

3. They state that the full characterization of the optimal policies for this special case is

extremely difficult but the authors could generate four regions of the starting inventory level

where optimal production decisions are characterized to a certain extent. The authors also

show that there may exist further sub-intervals in two of these four regions where the optimal

production quantities may fluctuate with the increase of the starting inventory level. We

conjecture the optimal ordering policies of CIMP to be even more complicated than that of

this special case.

We observe also in CIMP that there is no monotonic relation between the starting in-

ventory level (x) and the optimal production quantity. This result is depicted in Figure 5,

which is the result of a 3-period problem instance. We note that, for this problem instance
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Figure 4: Starting Inventory vs Minimum Expected Total Costs
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the optimal production quantity has a non-increasing structure in x up to x = −11, where

the optimal production quantity is 35. However, when x = −10 the optimal decision is to

produce 50 units, and this violates the monotonic structure.

Figure 5 also shows the optimal order-up-to levels with respect to x. We observe that

there are 3 distinct values of optimal order-up-to levels on this figure other than x, and

full permanent capacity production, x + U . Note that there exist only two distinct critical

order-up-to points (other than x and x+U) in the optimal policy stated for the last period.

5. Value of Flexible Capacity

Our purpose in this section is to investigate the value of utilizing flexible capacity and the

sensitivity of it as system parameters change. We compare a flexible capacity (FC) system

with an inflexible one (IC), where the contingent capacity can be utilized in the former but

cannot in the latter.

We define the (absolute) value of flexible capacity, V FC, as the difference between the

optimal expected total cost of operating the IC system, ETCIC , and that of the FC system,
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Figure 5: Starting Inventory vs Optimal Production Quantity for 3 Periods to go
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ETCFC . That is, V FC = ETCIC −ETCFC . In order to reflect the relativity, we also define

the relative value of flexible capacity as %V FC = V FC/ETCIC . We note that both V FC

and %V FC are always non-negative.

The first conclusion that can be drawn is that the value of flexible capacity increases

as the contingent capacity becomes less costly to utilize. It is easy to see why this relation

holds: As cc or Kc decreases while the other parameters are kept constant, ETCIC remains

the same, since flexible capacity is not utilized in this case, but ETCFC decreases due to

decreased costs. Consequently, both V FC and %V FC increases.

We conduct some numerical experiments to reveal the sensitivity of %V FC with respect

to the change in the rest of the system parameters. In the IC case of these numerical exam-

ples, we simply take the contingent capacity cost high enough to assure that no contingent

capacity is used (see Remark 1). We solve CIMP for the following set of input parameters,

unless otherwise noted: T = 12, U = 10, b = 5, h = 1, cc = 2.5, cp = 1.5, Kp = 40,

Kc = 20, α = 0.99, and x1 = 0. We consider demand that follows a seasonal pattern with
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Figure 6: % Value of Flexible Capacity vs Backorder Cost under Different Permanent Ca-
pacity Costs
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a cycle of 4 periods, where the expected demand is 10, 15, 10, and 5, respectively. Note

that the capacity is the same as the average demand for this base set. We first consider

Poisson distribution, but later we also consider Gamma distribution, in order to investigate

the impact of variation. We provide intuitive explanations to all of our results below and

our findings are verified through several numerical studies. However, one should be careful

in generalizing them, as for any experimental result, especially for extreme values of problem

parameters.

We first test the value of flexibility with respect to the backorder cost by varying the

value of b between 2 and 10. Figure 6 verifies intuition in the sense that %V FC is higher

when backorders are more costly, or equivalently when higher service levels are targeted.

Another result that the same graph depicts is that %V FC is higher when the permanent

capacity cost is lower. This result holds only for the relative value, not for the absolute

value. Indeed, absolute V FC remains unchanged for all values of cp for any given b, because

the optimal contingent capacity usage is independent of cp, as discussed in Section 3. Yet,

the relative value, %V FC, decreases for higher cp, because both of the expected costs, hence
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Figure 7: % Value of Flexible Capacity vs Permanent Capacity Size under Different CVs
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ETCIC , increases.

Another result we obtain is that %V FC increases as the permanent capacity decreases,

as can be expected, since the inadequacy of permanent capacity increases the requirement

for contingent capacity. As shown in Figure 7, the value of flexibility becomes extremely

high for low levels of permanent capacity, because of elevated backorder costs in case of IC.

Next, we test the impact of change in demand variance. But since this is not possible with

Poisson distribution, we assume Gamma distribution for demand. We alter the coefficient of

variation (CV) values between 0.5 and 1.5. We present the resulting relation also in Figure

7. The results are rather surprising, in the sense that the value of flexibility does not always

increase as variance increases. The reason for this is as follows. While both of the ETCIC and

ETCFC terms do increase as demand variance increases, the increase in ETCIC term is less

than that in ETCFC under low capacity. Because, most of the demand is backlogged anyway

for the IC case, whereas the expected total cost increases more significantly for the flexible

system. However, when the permanent capacity is sufficient to meet the demand on the

average, the value of flexibility increases as demand variance increases. This value persists

to be very significant under high demand variance, even when the permanent capacity is
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Figure 8: % Value of Flexible Capacity vs Set-up Costs
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much higher than average demand. For example, when CV = 1.5, %V FC equals 15.3% for

U = 20, which is twice the size of average demand. These results hold for the V FC as well

as the %V FC.

Finally, we investigate the impact of the set-up costs. Again, we assume the original

experimental setting and parameter values with Poisson demand. We vary the values of set

up costs for the permanent capacity (Kp) between 0 and 60, and that for the contingent

capacity (Kc) between 0 and 40.

The resulting %V FC values are presented in Figure 8. As discussed before, %V FC

decreases as Kc increases for any given level of Kp. However, the impact of a change in Kp

is less straightforward to express, since the change in %V FC as Kp increases, for any given

level of Kc, is not monotonic: it first decreases and then increases under the setting that

we consider. Nevertheless, the absolute value of flexible capacity, V FC, does increase as Kp

increases, because flexibility becomes more crucial as initiating production becomes more

costly.

The reason why the relation is not monotonic in the %V FC case is as follows. For

relatively small values of Kp, the rate of increase in ETCIC as Kp increases is less than the
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Figure 9: Expected Production Under Varying Production Set-up Costs
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rate of increase in ETCFC . But for relatively large values of Kp, the rate of increase in

ETCIC becomes the dominant one, because there is no way of avoiding high set-up costs in

the inflexible system, except for backordering.

We illustrate these points by the expected production quantities under three different

values of Kp, namely 0, 30, and 80, where Kc = 20. Expected production quantities are

presented in Figure 9. Note that the structure of the solution shows a similarity among

the cases where Kp is 0 and 30: There is a positive expectation of production by permanent

workers in every period, which is higher when Kp = 0, and the usage of contingent workers is

relatively limited, which is higher when Kp = 30. Nevertheless, the structure of the solution

changes dramatically when Kp = 80, in the sense that lot sizes become very large to make

benefit of economies of scale, once it is decided to initiate production, and hence the majority

of production is conducted by temporary workers. Therefore, each period with a positive

production is followed by a number of periods with no production and the system holds much

higher inventories when Kp = 80. Hence, for larger values of Kp, frequent use of contingent

resources make it possible to control the increase in expected costs (ETCIC), whereas in an

inflexible system such an opportunity does not exist. Consequently, the spread of the total
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production shifts from permanent to contingent resources as Kp increases. In this problem

instance, the percentage of total expected production performed by contingent resources are

14.05%, 21.37%, and 73.94% for Kp being 0, 30, and 80, respectively. This also indicates that

it is beneficial for the companies to outsource a larger portion of their production activities

as the setup cost of production increases.

6. Conclusions and Future Research

In this paper the integrated problem of inventory and flexible capacity management un-

der non-stationary stochastic demand with the possibility of positive set-up costs, both for

initiating production and ordering contingent capacity is considered. While a workforce ca-

pacity jargon is adopted in some parts of the paper, the model can be applied to any other

bottleneck resource that defines the capacity as well, given that there exists the option of

increasing this capacity by making use of contingent resources.

For the environment that we consider, the equivalence of this problem with the classical

production/inventory problem under piecewise linear production cost is shown. When the

set-up costs are negligible, the optimal policy depends on the level of starting inventory and

it is a variant of base-stock policy, in the sense that there are two order-up-to levels in each

period: One of them can be attained by utilizing contingent capacity, and the other can be

attained by utilizing only permanent capacity. There is also a region of starting inventory

level where full permanent capacity and no contingent capacity should be utilized.

When the set-up costs are positive, the optimal policy for the single-period problem is

shown to be a variant of (s, S) type policies where the policy parameters are functions of the

starting inventory level. With the help of a problem instance, it is shown that this policy

does not hold for the multi-period problem. This does not mean that the solution of the

multi-period problem cannot be characterized, so it is yet an open question. Nevertheless,

even a famous special case of this problem, namely the capacitated multi-period inven-

tory/production problem with positive set-up cost, is yet an open question, which makes it

likely that the optimal policy does not have a very simple structure.

Our computational analyses point out important directions for the use of flexibility. First

of all, there exists relative values of problem parameters where flexibility is very important:

(i) lower costs of contingent capacity, (ii) higher set-up costs of production, (iii) lower levels

of permanent capacity, and (iv) higher costs of backorders. Moreover, for businesses with
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demand volatility, the value of flexibility is extremely high even under abundant permanent

capacity levels. Under such circumstances, businesses should pursue establishing long-term

contractual relations with third-party contingent capacity providers (such as external labor

supply agencies). Such long-term agreements would bring significant operational cost sav-

ings. On the other hand, the opposite range of parameters yield relatively low value for

flexibility, which is also very important from a managerial point of view. Under such cir-

cumstances, there does not exist enough motivation to invest in capacity flexibility, since the

existing resources are sufficient for reasonable management of operations.

This research can be extended in several ways. Relaxing our assumptions on the capacity

usage, such as introducing an upper limit on contingent capacity, or introducing uncertainty

on contingent and/or permanent capacity would enrich the model, as well as relaxing our as-

sumption of zero lead times. Interactions with material availability; determining the optimal

permanent capacity level at the beginning of the problem horizon; incorporating intentional

changes in permanent capacity in strategic, tactical, or even operational level; exploring the

structure of the optimal solution under seasonal demand; developing an efficient heuristic for

the multi-period problem with set-up costs are among some other extension possibilities.

Appendix

Proof of Theorem 1. First, we need the following preliminary results for the proof:

Lemma 1 yc
T ≤ yp

T .

Proof : yc
T ≤ yp

T since b−cc

h+b
≤ b

h+b
and GT (y) is a non-decreasing function.2

Lemma 2 JT (y|x) is convex in y for any value of x. Moreover, y∗
T is the minimizer of

JT (y|x) where

y∗
T =











yc
T if x ≤ yc

T − U
x + U if yc

T − U ≤ x ≤ yp
T − U

yp
T if yp

T − U ≤ x
.

Proof : First note that Jp
T (y) = J c

T (y) at y = x + U . Moreover,
dJ

p

T
(y)

dy
= L′

T (y) ≤

L′
T (y) + cc =

dJc
T

(y)

dy
for any y. For y ≤ x + U , JT (y|x) is convex because Jp

T (y) is convex. At

y = x + U , JT (y|x) takes the form of another convex function J c
T (y) and since the derivative

of the new function is greater than that of the previous, the convexity is not violated after

the change of shape.
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By using the definition and the convexity of JT (y|x) and Lemma 1, it can be observed

that the function takes different forms in intervals x ≤ yc
T − U , yc

T − U ≤ x ≤ yp
T − U , and

yp
T − U ≤ x and the minimizer of the function in each of these intervals are yc

T , x + U , and

yp
T respectively. 2

Recall that fT (x) = Ucp + minx≤y{JT (y|x)}. Ucp is a constant term, hence fT (x) is

determined by only minimizing JT (y|x) over x ≤ y. Therefore, the optimal policy for

the last period follows from the evaluation of this minimum over intervals x ≤ yc
T − U ,

yc
T −U ≤ x ≤ yp

T −U , yp
T −U ≤ x ≤ yp

T , and yp
T ≤ x one by one and by the use of Lemma 2.

In order this policy to hold for all other periods in the planning horizon, similar results

as in Lemma 1 and 2 must hold for each of these periods: (i) Jt(y|x) is convex over y for a

given x, and (ii) yc
t ≤ yp

t for every period t ≤ T .

By using the optimal policy of period T , it can be shown that

fT (x) =



















J c
T (yc

T ) = cc(y
c
T − x − U) + LT (yc

T ) x ≤ yc
T − U

Jp
T (x + U) = LT (x + U) yc

T − U ≤ x ≤ yp
T − U

Jp
T (yp

T ) = LT (yp
T ) yp

T − U ≤ x ≤ yp
T

Jp
T (x) = LT (x) yp

T ≤ x

and

dfT (x)

dx
=



















−cc x ≤ yc
T − U

L′
T (x + U) yc

T − U ≤ x ≤ yp
T − U

0 yp
T − U ≤ x ≤ yp

T

L′
T (x) yp

T ≤ x

.

At x = yc
T − U , we have L′

T (x + U) = L′
T (yc

T ) = (h + b)GT (yc
T ) − b = −cc, because

yc
T = G−1

T

(

b−cc

h+b

)

. But since L is convex and is minimized at yp
T , we conclude that dfT (x)/dx

is continuous and non-decreasing, and consequently the functions fT (x) and E[fT (x)] are

convex in x. Starting with period T and assuming that the optimal policy and the convexity

of E[fk(x)] hold for all periods k = T, T − 1, ..., t + 1, it follows that Jt(y|x) is convex over

y for a given x. Let j(y) = dJp
t (y)/dy then yp

t = j−1(0). Moreover, yc
t = j−1(−cc) since

dJ c
t (y)/dy = j(y) + cc. Hence, due to the convexity of function J p

t , yc
t ≤ yp

t and an optimal

policy similar to the one stated in Lemma 2 directly follows. To conclude the proof, note

that

ft(x) =



















J c
t (y

c
t ) xt ≤ yc

t − U
Jp

t (xt + U) yc
t − U ≤ xt ≤ yp

t − U
Jp

t (yp
t ) yp

t − U ≤ xt ≤ yp
t

Jp
t (xt) yp

t ≤ xt

, dft(x)
dx

=























−cc xt ≤ yc
t − U

dJ
p
t (xt+U)

dx
yc

t − U ≤ xt ≤ yp
t − U

0 yp
t − U ≤ xt ≤ yp

t
dJ

p
t (xt)

dxt
yp

t ≤ xt
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At xt = yc
t − U , j(xt + U) = j(yc

t ) = j (j−1(−cc)) = −cc. Hence, ft(xt) is a convex

function over xt. This completes the proof. 2

Proof of Theorem 2:

Ucp is a constant term. Note that su(x) ≤ xu by definition of su(x). We need to examine

the following cases on the value of x.

Case I: xu ≤ yc
T and sc(x) ≤ su(x) ≤ xu

JT (y|x) is minimized at yc
T by Lemma 2 and therefore is non-increasing over x ≤ y ≤ yc

T .

Since sc(x) ≤ su(x), J c
T (yc

T |x)+Kp +Kc = JT (sc(x)|x) ≥ JT (su(x)|x) = Jp
T (xu)+Kp. Hence,

if production is viable then it must be limited to xu, ordering contingent capacity does not pay

off. If x ≤ su(x) = s(x), JT (x|x) ≥ JT (su(x)|x) = Jp
T (xu|x) + Kp by the definition of su(x).

Therefore, y∗
T (x) = xu = S(x) since s(x) = su(x). If x ≥ su(x) = s(x), JT (su(x)|x) ≥ JT (x|x)

and therefore y∗
T (x) = x.

Case II: xu ≤ yc
T and su(x) ≤ sc(x)

JT (y|x) is minimized at yc
T by Lemma 2 and therefore is non-increasing over x ≤ y ≤ yc

T .

As su(x) ≤ sc(x), Jp
T (xu)+Kp = JT (su(x)|x) ≥ JT (sc(x)|x) = J c

T (yc
T |x)+Kp +Kc. Hence, if

production is viable then it must be up to yc
T . If x ≤ sc(x) = s(x), JT (x|x) ≥ JT (sc(x)|x) =

JT (yc
T |x) + Kp by the definition of sc(x). Therefore, y∗

T (x) = yc
T = S(x) since s(x) = sc(x).

If x ≥ sc(x) = s(x), JT (sc(x)|x) ≥ JT (x|x) and therefore y∗
T (x) = x.

Case III: yc
T ≤ xu ≤ yp

T

JT (y|x) is minimized at xu by Lemma 2 and therefore is non-increasing over x ≤ y ≤ xu.

If x ≤ su(x) = s(x) ≤ xu, JT (x|x) ≥ JT (su(x)|x) = Jp
T (xu) + Kp by the definition of su(x).

Therefore, y∗
T (x) = xu = S(x) since s(x) = su(x). If x ≥ su(x) = s(x) then y∗

T (x) = x.

Case IV: yp
T ≤ xu

JT (y|x) is minimized at yp
T by Lemma 2 and therefore is non-increasing over x ≤ y ≤ yp

T .

If x ≤ sp(x) = s(x) ≤ yp
T , then JT (x|x) ≥ JT (sp(x)|x) = Jp

T (yp
T ) + Kp by the definition of

sp(x). Therefore, y∗
T (x) = yp

T = S(x) since s(x) = sp(x). If x ≥ sp(x) = s(x) then y∗
T (x) = x.

2

Proof of Theorem 3:

Case I: su(x) ≤ sc(x), xu ≤ yc
T

s(x) = sc(x). For x ≤ x + ∆ ≤ xu:

cc(y
c
T − x − U) + L(yc

T ) ≥ cc(y
c
T − x − ∆ − U) + L(yc

T )
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JT (yc
T |x) + Kp + Kc ≥ JT (yc

T |x + ∆) + Kp + Kc

JT (sc(x)|x) ≥ JT (sc(x + ∆)|x + ∆)

sc(x) ≤ sc(x + ∆)

Case II: sc(x) ≤ su(x), xu ≤ yc
T

s(x) = su(x). Since Jp
T is convex and minimized at yp

T ≥ x + ∆ + U , we can write for

x ≤ x + ∆ ≤ xu:

Jp
T (xu) + Kp ≥ Jp

T (xu + ∆) + Kp

JT (su(x)|x) ≥ JT (su(x + ∆)|x + ∆)

su(x) ≤ su(x + ∆)

Case III: yc
T ≤ xu ≤ yp

T

s(x) = su(x). This case can be proved similar to Case II.

Case IV: yp
T ≤ xu

s(x) = sp(x). For x ≤ x + ∆ ≤ xu, JT (sp(x)|x) = JT (sp(x + ∆)|x + ∆) = Jp
T (yp

T ) + Kp.

Therefore sp(x) = sp(x + ∆). 2
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