32 research outputs found

    Experimental setup for carrier lifetime measurement based on photoluminescence response. Design, construction and calibration

    Get PDF
    The measurement of the effective carrier lifetime in silicon has a great importance for material characterization in the photovoltaic field since carrier lifetime represents a fundamental quality factor in solar cell production. Photoluminescence is a technique that allows lifetime measurement at low injection level not affected by the measurement artifacts (minority carrier trapping and the depletion-region modulation) typically found in other techniques. We have designed and constructed a device to calibrate and measure the photoluminescence response of silicon solar cells. Then we have applied the quasisteady- state photoluminescence technique (QSS-PL) to obtain the minority carrier lifetime curve. The objective is to extend the available measurement range to obtain additional information about surface recombination

    A colorectal cancer susceptibility new variant at 4q26 in the Spanish population identified by genome-wide association analysis

    Get PDF
    This work was partially supported by the CENIT program from the Centro Tecnológico Industrial (CEN-20091016), grants from the Spanish Institute of Health Carlos III (ADE10/00026, PI09/02444, PI12/00511, Acción Transversal de Cáncer) grants from the Fondo de Investigacion Sanitaria/FEDER (08/1276, 08/0024, PS09/02368, 11/00219, 11/00681), and by COST office through COST action BM1206. SCB is supported by contracts from the Fondo de Investigación Sanitaria (CP 03-0070). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Centro Tecnológico IndustrialInstituto de Salud Carlos IIIFondo de Investigación Sanitaria / FEDE

    Modelización espacial de la distribución de cetáceos en el norte de la Península Ibérica: la importancia de incluir información de sus presas

    Get PDF
    Con el fin de identificar áreas ecológicamente significativas, necesitamos relacionar la distribución de especies con descriptores ecológicos que nos ayuden a comprender su distribución. En el medio marino, los modelos de distribución de especies (MDE) han sido tradicionalmente desarrollado en base a descriptores ecológicos indirectos (como clorofila y temperatura superficial del mar) recogidos a través de imágenes de satélite. Aunque las especies marinas pueden utilizar estas señales ambientales para localizar sus presas, el uso de información sobre la distribución de las mismas sería más informativo que el uso de estos descriptores indirectos. Gracias a las campañas oceanográficas multidisciplinares se puede recoger información simultánea de varios niveles tróficos, desde el plancton a los depredadores marinos, incluyendo sus principales presas pelágicas: los pequeños peces pelágicos. Por lo tanto, la inclusión de esta información en los MDE debería ser más relevante que las variables oceanográficas indirectas. Para testar esta hipótesis, desarrollamos MDE para las tres especies más abundantes de cetáceos que se registran en el norte de la Península Ibérica durante las campañas de primavera del Instituto Español de Oceanografía, PELACUS (2007-2013). Estas especies fueron el delfín común Delphinus delphis, el delfín mular Tursiops truncatus y el calderón común Globicephala melas. Dependiendo de las especies consideradas, se identificaron diferentes variables ambientales como importantes a la hora de explicar los patrones de distribución; pero las cifras globales ponen de manifiesto la principal contribución de la batimetría, seguido de la temperatura superficial del mar y la variabilidad espacial en la distribución de los pequeños peces pelágicos. Estos resultados tienen importantes implicaciones en reconocer la importancia de los estudios oceanográficos multidisciplinares para la obtención de descriptores ecológicos directos para mejorar los modelos de distribución de depredadores marinos

    Cerebrovascular events and outcomes in hospitalized patients with COVID-19: The SVIN COVID-19 Multinational Registry

    Get PDF
    © 2020 World Stroke Organization.[Background]: Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) has been associated with a significant risk of thrombotic events in critically ill patients. [Aim]: To summarize the findings of a multinational observational cohort of patients with SARS-CoV-2 and cerebrovascular disease. [Methods]: Retrospective observational cohort of consecutive adults evaluated in the emergency department and/or admitted with coronavirus disease 2019 (COVID-19) across 31 hospitals in four countries (1 February 2020–16 June 2020). The primary outcome was the incidence rate of cerebrovascular events, inclusive of acute ischemic stroke, intracranial hemorrhages (ICH), and cortical vein and/or sinus thrombosis (CVST). [Results]: Of the 14,483 patients with laboratory-confirmed SARS-CoV-2, 172 were diagnosed with an acute cerebrovascular event (1.13% of cohort; 1130/100,000 patients, 95%CI 970–1320/100,000), 68/171 (40.5%) were female and 96/172 (55.8%) were between the ages 60 and 79 years. Of these, 156 had acute ischemic stroke (1.08%; 1080/100,000 95%CI 920–1260/100,000), 28 ICH (0.19%; 190/100,000 95%CI 130–280/100,000), and 3 with CVST (0.02%; 20/100,000, 95%CI 4–60/100,000). The in-hospital mortality rate for SARS-CoV-2-associated stroke was 38.1% and for ICH 58.3%. After adjusting for clustering by site and age, baseline stroke severity, and all predictors of in-hospital mortality found in univariate regression (p < 0.1: male sex, tobacco use, arrival by emergency medical services, lower platelet and lymphocyte counts, and intracranial occlusion), cryptogenic stroke mechanism (aOR 5.01, 95%CI 1.63–15.44, p < 0.01), older age (aOR 1.78, 95%CI 1.07–2.94, p ¼ 0.03), and lower lymphocyte count on admission (aOR 0.58, 95%CI 0.34–0.98, p ¼ 0.04) were the only independent predictors of mortality among patients with stroke and COVID-19. [Conclusions]: COVID-19 is associated with a small but significant risk of clinically relevant cerebrovascular events, particularly ischemic stroke. The mortality rate is high for COVID-19-associated cerebrovascular complications; therefore, aggressive monitoring and early intervention should be pursued to mitigate poor outcomes

    A colorectal cancer susceptibility new variant at 4q26 in the Spanish population identified by genome-wide association analysis

    Get PDF
    BACKGROUND: Non-hereditary colorectal cancer (CRC) is a complex disorder resulting from the combination of genetic and non-genetic factors. Genome-wide association studies (GWAS) are useful for identifying such genetic susceptibility factors. However, the single loci so far associated with CRC only represent a fraction of the genetic risk for CRC development in the general population. Therefore, many other genetic risk variants alone and in combination must still remain to be discovered. The aim of this work was to search for genetic risk factors for CRC, by performing single-locus and two-locus GWAS in the Spanish population. RESULTS: A total of 801 controls and 500 CRC cases were included in the discovery GWAS dataset. 77 single nucleotide polymorphisms (SNP)s from single-locus and 243 SNPs from two-locus association analyses were selected for replication in 423 additional CRC cases and 1382 controls. In the meta-analysis, one SNP, rs3987 at 4q26, reached GWAS significant p-value (p = 4.02×10(-8)), and one SNP pair, rs1100508 CG and rs8111948 AA, showed a trend for two-locus association (p = 4.35×10(-11)). Additionally, our GWAS confirmed the previously reported association with CRC of five SNPs located at 3q36.2 (rs10936599), 8q24 (rs10505477), 8q24.21(rs6983267), 11q13.4 (rs3824999) and 14q22.2 (rs4444235). CONCLUSIONS: Our GWAS for CRC patients from Spain confirmed some previously reported associations for CRC and yielded a novel candidate risk SNP, located at 4q26. Epistasis analyses also yielded several novel candidate susceptibility pairs that need to be validated in independent analyses

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    Experimental setup for carrier lifetime measurement based on photoluminescence response. Design, construction and calibration

    No full text
    The measurement of the effective carrier lifetime in silicon has a great importance for material characterization in the photovoltaic field since carrier lifetime represents a fundamental quality factor in solar cell production. Photoluminescence is a technique that allows lifetime measurement at low injection level not affected by the measurement artifacts (minority carrier trapping and the depletion-region modulation) typically found in other techniques. We have designed and constructed a device to calibrate and measure the photoluminescence response of silicon solar cells. Then we have applied the quasisteady- state photoluminescence technique (QSS-PL) to obtain the minority carrier lifetime curve. The objective is to extend the available measurement range to obtain additional information about surface recombination
    corecore