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Abstract. The measurement of the effective carrier lifetime in silicon has a great 

importance for material characterization in the photovoltaic field since carrier lifetime 

represents a fundamental quality factor in solar cell production. Photoluminescence is a 

technique that allows lifetime measurement at low injection level not affected by the 

measurement artifacts (minority carrier trapping and the depletion-region modulation) 

typically found in other techniques. 

We have designed and constructed a device to calibrate and measure the 

photoluminescence response of silicon solar cells. Then we have applied the quasi-

steady-state photoluminescence technique (QSS-PL) to obtain the minority carrier 

lifetime curve. The objective is to extend the available measurement range to obtain 

additional information about surface recombination. 
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1.  Introduction 

 

  Nowadays the energy production is based in a large percentage on fossil fuels. Two factors are 

making us change this market structure: the shortage of fuels and the environmental problems 

derived from the gas emissions which contribute to the climate change. 

  In this context, the photovoltaic conversion of the solar energy is expected to develop an 

important role replacing the existing energy production. Several studies suggest that there will 

be a huge increment of the photovoltaic market in the near future and specially in the period 

2020-2040 [1]. Figure 1 shows the evolution of the photovoltaic energy production in the world 

in megawatts peak (MWp) produced annually. As it can be seen, there is a very important 

upward trend in absolute and percentage terms. 

  To progress in the energy market and not depend on public bonus it is necessary to reduce the 

costs of the photovoltaic solar energy and improve or maintain the efficiency. Currently the 

cost-energy relationship is around 2-3 €/Wp, while experts have numbered the decrease to be 

competitive to 0.5 €/Wp or even less [1]. 

  The key to reduce the costs of solar energy production is to reduce the manufacturing costs of 

the devices, in other words, to reduce the costs of solar cells. The main technologies in solar 

cells are based on silicon (organic cells and other possibilities are under study), so the efforts 

should be focused on reducing the costs of silicon solar cells. 
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  Figure 1: Annual evolution of the solar energy production in megawatts peak. 

 

 

  It is calculated that the 30-50% of the price of a solar cell comes from the initial material, the 

silicon [2]. Therefore, any reduction of the material costs will be determinant in the final price. 

The manufacturers have already noticed this, so one of their first strategies has been the rise of 

the multi-crystalline silicon (mc-Si). This material consists in an agglomerate of small silicon 

crystals of about some square centimetres, despite having less efficiency it is much more 

cheaper than the mono-crystalline silicon (c-Si). 

  Another strategy to reduce the module fabrication costs is to make the silicon wafers thinner. 

From the 350-400 �m in the past, today the wafer thickness is around 225-250 �m, and it is 

expected a larger reduction in the short-term with the thin-film technologies. The reduction of 

the wafer thickness makes it possible to extract and build a larger number of solar cells from the 

same silicon ingots, thus reducing the costs. 

  While the wafers become thinner it is important to know and measure their efficiency during 

the manufacturing process. The effective lifetime (����) of the photogenerated carriers gives us 

an idea of the recombination rate, which is the loss of these carriers. The information given by 

the lifetime measurement is fundamental to develop silicon solar cells. In addition, it will be 

more important to control their efficiency due to the increment of the surface/volume 

relationship (the reduction of the wafer thickness) and the fact that recombination is dominated 

by surface processes. 

  The term “lifetime” refers to multiple physical processes, but is commonly used to describe the 

recombination processes which are defined as the cancellation of an electron-hole pair. So, the 

lifetime is not a property of the semiconductor but a relationship involving charge carriers and 

semiconductor properties. As we work with low injection level conditions then we will measure 

the “minority carrier lifetime”, but this term sometimes is used for higher injection levels too. 

  Recently different techniques and instruments that allow a reliable measure of the lifetime 

dependent on the level of photo-generated carriers or the injection level (∆�) have emerged. 

Among the different possibilities, the photoconductance is the principal method to measure 

lifetimes, but at low injection level the technique fails because it is sensitive to artifacts such as 

minority carrier trapping or depletion-region modulation (DRM) and makes and overestimation 

of the lifetime [3], [4]. 

  The aim of this master thesis work is to develop a measurement system, including the software 

and the equipment, to obtain a reliable carrier lifetime with the photoluminescence technique at 

low injection conditions (∆� � �	) avoiding the artifacts above mentioned. On section 2 the 

theoretical concepts are described. Section 3 presents the configuration and the calibration. 

Finally section 4 presents the quasi-steady-state photoluminescence technique (QSS-PL) and the 

results obtained. 
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2. Theoretical concepts 
 

2.1. Bulk recombination 

 

  The generation of excess charge carriers in crystalline silicon (electrons and holes) is provided 

by thermal activity, electrical excitation or light excitation. Opposite to the generation there is 

the recombination of such carriers, in which the annihilation of electrons and holes is assisted 

by several mechanisms. It is a goal of solar cell development to minimize all the recombination 

processes, so that the light generated carriers can contribute to the photocurrent. The net 

electron-hole recombination rate (U) can be defined as: 

 


 � ∆�

 � ∆�


  ,                                                                                                (2.1) 

 

where �  is the recombination lifetime which characterizes the recombination process and ∆� � � � �� is the excess minority carrier density (or injection density) within the bulk, � is 

the total electron density and �� is the electron density at equilibrium. We assume, all along of 

this work, the same excess concentration of electrons and holes ∆� � ∆�, i.e. a photon creates 

one electron-hole pair. 

  Crystalline silicon bulk presents three independent recombination processes [2], [5]: 
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  In the radiative recombination process (
���) a photon is delivered. Since the electron is at 

the conduction band and the hole is at the valence band, the delivered photon has approximately 

the band gap energy of the semiconductor material. The recombination rate is proportional to 

the density of electrons and holes (� and �), since one of each is needed in this process: 

 
��� � +,�� � �-./ 0 + · ∆� · ,��2� � ∆�/ ,                                           (2.3) 

 

where ��2� is the donor or acceptor density, and �- the intrinsic carrier density of silicon. In    

c-Si the radiative constant B has a value of 1 · 1056789:/<  [6], [7], leading radiative 

recombination to a negligible rate, i.e. a high lifetime (����). B has a low value because silicon 

has an indirect gap and radiative recombination involves 4 particles (two carriers, a photon and 

a phonon). 

  In Auger recombination (
	� ) the excess energy of the transition is given to another charge 

carrier. Auger recombination dominates at high injection level. 

  And in Shockley Read Hall recombination (
!�"), the recombination takes place through a 

defect whose energy level is located within the forbidden energy band gap, the excess energy is 

delivered by phonons. Both electrons and holes can be trapped. SRH recombination dominates 

at low injection level. 

 

2.2. Surface recombination 

 

  At the semiconductor surface the crystalline network is completely lost and there is a high 

density of defects within the forbidden energy band gap. Hence the surface recombination rate 

is described by the SRH theory [8], [9]. 

  We can separate the front and back surface rates of the solar cell [10]: 

 
= � 
=,�>2�? � 
=,��@� � A���,�>2�? · ∆� � A���,��@� · ∆� ,                     (2.4) 

 

where A���  is an effective surface recombination velocity (89 · <56) and ∆� is the minority 

carrier density at the quasi-neutral bulk, i.e. practically along the whole c-Si wafer thickness. It 

must be mentioned that very often a space charge region is created at the surfaces and a big 
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difference can be founded between carrier densities at the surfaces and at the bulk. Since ∆� can 

be easily measured and controlled by changing the illumination level, the surface recombination 

rate is related to the bulk carrier density instead to the surface density. The impact of the space 

charge region is then included in A���. 

 

2.3. Effective lifetime 

 

  The Effective lifetime includes any recombination process: ∑ 
-- � ∆�

CDD . 

  Making the following assumptions: 

• The y- and z- dimensions of the wafer are much longer than the x- dimension. 

• ����� is constant within the wafer.  

• Both surfaces have the same A��� value:  A���,�>2�? � A���,��@�. 

• The photo-generation rate within the wafer (E�F?) is constant through the wafer leading 

to a constant profile of the excess carrier density ∆�. 

  A relationship between ���� and the bulk and surface parameters can be calculated: 

 

∑ 
-- � ∆�

CDD � G 
����HIJ/.

5J/. � 
=,�>2�? � 
=,��@� � ∆�·J

���� � 2A��� · ∆� ,    (2.5) 

 6

CDD � 6


���� � 2 !CDD
J  .                                                                                   (2.6) 

 

  In order to measure ���� we use the continuity equation of minority carriers [11]: 

 �∆�
�? � E�F?LMN � ∆�


CDD � 6
O

�PQ
�F  ,                                                                     (2.7) 

 

where E�F?LMN is the generation rate and R� is the current density of electrons, as we work in 

open-circuit conditions (the solar cell is not connected) R� � 0. 

  Therefore,  ���� can be defined as follows [2], [5], [11]: 

 

���� � ∆�
SCTUL?N5 %∆Q

%U
 .                                                                                (2.8) 

 

  This equation describes the general behavior of the effective lifetime of a silicon wafer under 

any illumination source. The lifetime is only dependent on the injection level (∆�) and the 

external generation rate (E�F?). The latter can be easily measured with a calibrated photosensor 

that measures the light intensity that arrives to the solar cell. On the other hand, in this work we 

use the photoluminescence response of the semiconductor material to evaluate the radiative 

recombination rate and, thus, obtain a value for ∆�. This is explained in the following section. 

 

 

3. Photoluminescence. Experimental setup and calibration 

 
  Photoluminescence is a process in which the substrate absorbs and re-radiates photons. In a 

general approach, we use the photoluminescence response for a contactless, nondestructive 

method of probing the electronic structure of materials useful to measure the effective lifetime. 

  Light is directed onto a sample, where it is absorbed in a photo-excitation process. The energy 

can be dissipated by the sample through the reemission of light. Radiative transitions in 

semiconductors can involve localized defect levels. The photoluminescence energy associated 

with these levels can also be used to identify specific defects, and the amount of 

photoluminescence can be used to determine their concentration [4], [12]. 

  In our case, we are interested in the radiative process where an electron in the conduction band 

recombines with a hole at the valence band. Then, the energy of the reemitted light is related to 
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the band gap energy. At room temperature, silicon has a band gap of 1.12 eV, hence its 

reemitted light has a wavelength peak at 1140 nm [13], [14]. The quantity of the reemitted light 

is related to the radiative recombination rate and to ∆n through Equation (2.3). We will 

characterize ∆� and, thus, ���� with the photoluminescence response. 

 

3.1. Experimental setup 

 

  Figure 2a presents the block diagram to calibrate the ����  based on the photoluminescence 

response of the c-Si wafer [15], [16]. A picture of the whole equipment is given in Figure 2b. 

 

  
Figure 2: (a) Block diagram of our ���� calibration system; (b) Image of the whole setting. 
 

  The light source is an array of 7 red LEDs with a wavelength of 650nm (the spectral 

distribution is in Figure 3a). It has a power supply and a function generator connected to the 

circuit above (Fig. 2b), and then connected to the array of LEDs (Fig. 3b). 

 

            
Figure 3: (a) Spectral distribution of the LED’s; (b) Top view of the device, the LED array and 

the solar cell. 

 

  The light of the LEDs is focused on the solar cell. The data exposed in this work was obtained 

with a solar cell of 253 �m thickness and an acceptor density of �	 � 5 · 1067895:. The solar 

cell reflects the 4.8% of the light at 650nm (Fig. 4a), some of the remaining light (95.2%) is 

absorbed and reemitted over 1140 nm in any direction [13], [14]. 

  On the detector there is an optical filter which attenuates the red light at 650nm and transmits 

the infrared light over 1140nm (the spectral response of the filter is in Figure 4b). Then the light 

is detected with the Hamamatsu G6126 infrared detector (Fig.5e), an InGaAs photodiode. 

  The detector sends a voltage (proportional to the detected light intensity) to the lock-in 

amplifier (also known as phase-sensitive detector), which measures the real and the imaginary 

parts of the voltage (the solar cell introduces a phase shift). Finally these values are sent to the 
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personal computer, via a GPIB, where they are used to calculate the phase and the amplitude of 

the detected light intensities (WXY and WS), to obtain ∆� and E�F?. 
 

   
Figure 4: (a) Optical factor of the solar cell; (b) Spectral transmission response of the optical filter. 

 

 
Figure 5. Different images of the device: (a) The Led array and the solar cell; (b) The solar cell; 

(c) The hole in the “foscurit” material; (d) The filter; (e) The infrared detector. 

 

3.2. Fundamentals of lifetime measurement from photoluminescence response 

 

  A constant light intensity is generated using the function generator connected to the LEDs. 

That is stationary condition: 

 �∆�
�? � 0 .                                                                                                      (3.1) 

 

Therefore Equation (2.8) can be simplified to: 

 

���� � ∆�
SCTU ,                                                                                                 (3.2) 

 ����  only depends on ∆�  and E�F? . Firstly, we focus on how to obtain ∆�  from the 

photoluminescence signal. As the light detected (the infrared response of the solar cell) comes 

from the radiative recombination of the wafer, using Equation (2.3) a relationship between the 

detected IR light intensity WXY (V) and the injection level ∆� (895:) can be obtained [17], [18]: 

 WXY � Z- · + · ∆� · L�	 � ∆�N � [@�� \  ∆� · L�	 � ∆�N,                           (3.3) 

 

where Z- is a proportional constant and we have defined the calibration factor [@�� (] · 89^) as Z- · +. This quadratic equation can be resolved to obtain ∆�: 

 

∆� � � _&
. � `_&ab � cde

�f$� .                                                                          (3.4) 

 

  On the other hand, to measure the photo-generation rate E�F? (895: · <56) we need to take out 

the solar cell and measure the light intensity at 650nm that transmits the filter WS (V). Some 
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parameters must be taken into account [19]: the volts/suns conversion factor at the detector 

([g/=��= � 1.5 ] · 89. · <h�<56 ), the effective optical transmission factor of the sample at 

650nm ([2�? � 0.952, Fig. 4a) and the thickness of the wafer (j). Applying that the available 

photons at 1 sun are 46mA/1.16
-19

C the expression can be written as follows: 

 

E�F? � WS · �klU
�m/n�Qn · �,�b^ o/=

J · 6.^pqro � WS · [S  .                                                  (3.5) 

 

  With the Equations (3.4) and (3.5) we can rewrite the Expression (3.2) as follows: 

 

���� � ∆�
SCTU � s� _&

. � `_&ab � cde
�f$�t / LWS · [SN ,                                     (3.6) 

 

  The only parameter that we don’t know the value is the calibration factor ([@��) that relates the 
photoluminescence response to ∆�. In the following section we propose a method to calibrate it. 

 

3.3. Self-consistent calibration 

 

  To determine [@�� we add a sinusoidal signal to the constant illumination, this sinusoidal signal 

has low amplitude (10% of the constant signal) and low frequency. This modulated light is 

related to a photogeneration rate E�F? � E� � E6u-v?, where E� is the bias illumination, E6 is 
the amplitude of the modulated generation and w is the modulation frequency. Now with the 

excess carrier density being ∆� � ∆�� � ∆�6u-v? we can define the phase shift x with respect 

to E6. It can be demonstrated that the frequency response of the semiconductor is described as a 

low pass filter described by the differential lifetime (��-� ), whose phase shift follows the 

expression [20]: 

 tanLxN � �w \ ��-�     |       ��-� � tanL�xN /w .                                (3.7) 

   

  The lock-in allows us to measure only the AC light response of the solar cell: a linear but 

phased response of the input signal because a solar cell acts as a low-pass filter (Figure 6). 

 

 
Figure 6: Phase response of the solar cell (a low-pass filter). It is represented the phase 

(M}�LxN) dependent on the angular velocity (w � 2~[). 
 

  From the AC measurement of the lock-in we obtain ��-�. On the other hand, the definition of 

��-� is the derivative of ∆� on E�F? i.e. the division of small increments of ∆� and E�F? [21]: 

 

��-� � �L∆�N
�SCTU � ∆�q

Sq � s� _&
. � `_&ab � cde&�

�f$�t / ,WS	o · [S/ ,                       (3.8) 

 

notice that we are using the superscript AC:  WXY	o is the module of the AC photoluminescence 

response and WS	o is the module of the AC photogeneration intensity.  
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  Therefore we can obtain [@�� isolating it in Equation (3.8): 

 

[@�� � WXY	o   /  ����-� · WS	o · [S � _&
. �. � _&ab � ,                                         (3.9) 

 

in our case the result for [@�� is 2.84 · 105:6 ] · 89^ . 
 

  This result of [@�� can be applied in Equation (3.6) to obtain the effective lifetime (����). The 

calibration results for ��-� and ���� are plotted for different light intensities in Figure 8 with big 

symbols.  

 

 

4. Quasi-steady-state photoluminescence (QSS-PL). Results 
 

  The QSS-PL technique is useful to measure the ����  for a wide range of injection levels, 

taking into account the calibration we have done ([@��) and the parameters we have described. 

  For the QSS-PL technique we make one change in the setup (Fig. 2a): the lock-in amplifier is 

replaced by an oscilloscope which sends the voltages measured to the PC via the GPIB. Now it 

is important to take into account the dark current intensity when we measure and use the 

intensities WS and WXY. 

  There is a change in the illumination, now a triangular signal is generated for the LEDs [17], 

[19], [22]. To apply the QSS-PL technique we do the same procedure than in the calibration 

method: we measure the intensity of the infrared response of the wafer (WXY ) and then we 

measure the light intensity taking out the solar cell to obtain the generation of the minority 

carriers (WS ). The results for WS  and WXY  are presented in Figure 7. The photoluminescence 

response has a higher value because the filter reflects the light of 650nm and transmits the 

reemitted IR light. 

 

 
Figure 7: The red light intensity detected taking out the solar cell in red; the infrared 

photoluminescence response of the wafer in blue.  

 

  To obtain ���� we use Equation (2.8).  

• ∆� can be calculated from WXY using Equation (3.4) and using the value of [@�� obtained 

in section 3. 

• 
�∆�
�?  can be extracted from ∆�  calculating its slope (making linear regressions and 

deriving). 

• E�F? can be calculated from WS using Equation (3.5) and the factor [S. 

 

  Finally we obtain the QSS-PL effective lifetime (����) in the low-injection level. Figure 8 

presents the results (� as a function of ∆� in logarithmic scale). It is also represented the QSS-

PL differential lifetime (��-�) and the results obtained during the calibration procedure. 
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Figure 8: Experimental results for the minority carrier lifetime. The calibration and the QSS-PL. 

 

  There are two branches in the curves of the QSS-PL of Figure 8 because we introduce a 

triangular signal. One branch is related to the ascent and the other branch to the descent of the 

signal. The two branches overlap, indicating that the calibration has been properly done. 

 

  In order to check out if the measurement is properly calibrated, we sent the same sample to the 

Fraunhofer Institute for Solar Energy Systems (ISE) in Freiburg. This laboratory is considered 

as the most advanced in the photovoltaic field in Europe and they have developed a QSS-PL 

set-up with their own calibration procedure, different from the one exposed hereby. Figure 9 

presents the comparison of the results obtained at the ISE-Freiburg and the ones measured in 

this work: 

 

 
Figure 9: Experimental results for the effective lifetime in red and the ISE results in blue. 

 

  As it can be seen, the curves overlap for more than two orders of magnitude. A small 

difference can be found for very low injection probably related to a higher noise in our set-up. 

However, this result definitively validates the QSS-PL system designed in this work and its 

calibration method. 
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5. Conclusions 
 

  We have successfully designed, constructed and calibrated an optical experimental setup to 

measure the effective lifetime of a solar cell from its photoluminescence response. We have 

developed the software and the equipment to calibrate and measure the QSS-PL at low-injection 

level conditions. 

  Particularly, we propose a new calibration method based on the “small signal” response of the 

solar cell. All this work has been validate by cross-checking our lifetime data with the ones 

obtained at ISE-Freiburg. 
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