47 research outputs found
Recommended from our members
Direct measurement of Coulomb-laser coupling
The Coulomb interaction between a photoelectron and its parent ion plays an important role in a large range of light-matter interactions. In this paper we obtain a direct insight into the Coulomb interaction and resolve, for the first time, the phase accumulated by the laser-driven electron as it interacts with the Coulomb potential. Applying extreme-ultraviolet interferometry enables us to resolve this phase with attosecond precision over a large energy range. Our findings identify a strong laser-Coulomb coupling, going beyond the standard recollision picture within the strong-field framework. Transformation of the results to the time domain reveals Coulomb-induced delays of the electrons along their trajectories, which vary by tens of attoseconds with the laser field intensity
Shot noise limited characterization of femtosecond light pulses
Probing the evolution of physical systems at the femto- or attosecond
timescale with light requires accurate characterization of ultrashort optical
pulses. The time profiles of such pulses are usually retrieved by methods
utilizing optical nonlinearities, which require significant signal powers and
operate in a limited spectral
range\cite{Trebino_Review_of_Scientific_Instruments97,Walmsley_Review_09}. We
present a linear self-referencing characterization technique based on time
domain localization of the pulse spectral components, operated in the
single-photon regime. Accurate timing of the spectral slices is achieved with
standard single photon detectors, rendering the technique applicable in any
spectral range from near infrared to deep UV. Using detection electronics with
about ps response, we retrieve the temporal profile of a picowatt pulse
train with fs resolution, setting a new scale of sensitivity in
ultrashort pulse characterization.Comment: Supplementary information contained in raw dat
Studying the universality of field induced tunnel ionization times via high-order harmonic spectroscopy
High-harmonics generation spectroscopy is a promising tool for resolving
electron dynamics and structure in atomic and molecular systems. This scheme,
commonly described by the strong field approximation, requires a deep insight
into the basic mechanism that leads to the harmonics generation. Recently, we
have demonstrated the ability to resolve the first stage of the process --
field induced tunnel ionization -- by adding a weak perturbation to the strong
fundamental field. Here we generalize this approach and show that the
assumptions behind the strong field approximation are valid over a wide range
of tunnel ionization conditions. Performing a systematic study -- modifying the
fundamental wavelength, intensity and atomic system -- we observed a good
agreement with quantum path analysis over a range of Keldysh parameters. The
generality of this scheme opens new perspectives in high harmonics
spectroscopy, holding the potential of probing large, complex molecular
systems.Comment: 11 pages, 5 figure
High-order harmonic transient grating spectroscopy of SF6 molecular vibrations
special issue : Ultrafast electron and molecular dynamicsInternational audienceStrong field transient grating spectroscopy has shown to be a very versatile tool in time-resolved molecular spectroscopy. Here we use this technique to investigate the high-order harmonic generation from SF6 molecules vibrationally excited by impulsive stimulated Raman scattering. Transient grating spectroscopy enables us to reveal clear modulations of the harmonic emission. This heterodyne detection shows that the harmonic emission generated between 14 to 26 eV is mainly sensitive to two among the three active Raman modes in SF6, i.e. the strongest and fully symmetric nu 1-A1g mode (774 cm-1, 43 fs) and the slowest mode nu5-T2g (524 cm-1, 63 fs). A time-frequency analysis of the harmonic emission reveals additional dynamics: the strength and central frequency of the nu 1 mode oscillate with a frequency of 52 cm-1 (640 fs). This could be a signature of the vibration of dimers in the generating medium. Harmonic 11 shows a remarkable behavior, oscillating in opposite phase, both on the fast (774 cm-1) and slow (52 cm-1) timescales, which indicates a strong modulation of the recombination matrix element as a function of the nuclear geometry. These results demonstrate that the high sensitivity of high-order harmonic generation to molecularvibrations, associated to the high sensitivity of transient grating spectroscopy, make their combination a unique tool to probe vibrational dynamics
Observation of light driven band structure via multi-band high harmonic spectroscopy
Intense light-matter interactions have revolutionized our ability to probe
and manipulate quantum systems at sub-femtosecond time scales, opening routes
to all-optical control of electronic currents in solids at petahertz rates.
Such control typically requires electric field amplitudes , when
the voltage drop across a lattice site becomes comparable to the characteristic
band gap energies. In this regime, intense light-matter interaction induces
significant modifications of electronic and optical properties, dramatically
modifying the crystal band structure. Yet, identifying and characterizing such
modifications remains an outstanding problem. As the oscillating electric field
changes within the driving field's cycle, does the band-structure follow, and
how can it be defined? Here we address this fundamental question, proposing
all-optical spectroscopy to probe laser-induced closing of the band-gap between
adjacent conduction bands. Our work reveals the link between nonlinear light
matter interactions in strongly driven crystals and the sub-cycle modifications
in their effective band structure
Recommended from our members
Multidimensional high harmonic spectroscopy of polyatomic molecules: detecting sub-cycle laser-driven hole dynamics upon ionization in strong mid-IR laser fields
High harmonic generation (HHG) spectroscopy has opened up a new frontier in ultrafast science, where electronic dynamics can be measured on an attosecond time scale. The strong laser field that triggers the high harmonic response also opens multiple quantum pathways for multielectron dynamics in molecules, resulting in a complex process of multielectron rearrangement during ionization. Using combined experimental and theoretical approaches, we show how multi-dimensional HHG spectroscopy can be used to detect and follow electronic dynamics of core rearrangement on sub-laser cycle time scales. We detect the signatures of laser-driven hole dynamics upon ionization and reconstruct the relative phases and amplitudes for relevant ionization channels in a CO2 molecule on a sub-cycle time scale. Reconstruction of channel-resolved complex ionization amplitudes on attosecond time scales has been a long-standing goal of high harmonic spectroscopy. Our study brings us one step closer to fulfilling this initial promise and developing robust schemes for sub-femtosecond imaging of multielectron rearrangement in complex molecular systems
Transform-limited pulses are not optimal for resonant multiphoton transitions
Maximizing nonlinear light-matter interactions is a primary motive for
compressing laser pulses to achieve ultrashort transform limited pulses. Here
we show how, by appropriately shaping the pulses, resonant multiphoton
transitions can be enhanced significantly beyond the level achieved by
maximizing the pulse's peak intensity. We demonstrate the counterintuitive
nature of this effect with an experiment in a resonant two-photon absorption,
in which, by selectively removing certain spectral bands, the peak intensity of
the pulse is reduced by a factor of 40, yet the absorption rate is doubled.
Furthermore, by suitably designing the spectral phase of the pulse, we increase
the absorption rate by a factor of 7.Comment: 4 pages, 3 figure