672 research outputs found

    The Cat Is On the Mat. Or Is It a Dog? Dynamic Competition in Perceptual Decision Making

    Get PDF
    Recent neurobiological findings suggest that the brain solves simple perceptual decision-making tasks by means of a dynamic competition in which evidence is accumulated in favor of the alternatives. However, it is unclear if and how the same process applies in more complex, real-world tasks, such as the categorization of ambiguous visual scenes and what elements are considered as evidence in this case. Furthermore, dynamic decision models typically consider evidence accumulation as a passive process disregarding the role of active perception strategies. In this paper, we adopt the principles of dynamic competition and active vision for the realization of a biologically- motivated computational model, which we test in a visual catego- rization task. Moreover, our system uses predictive power of the features as the main dimension for both evidence accumulation and the guidance of active vision. Comparison of human and synthetic data in a common experimental setup suggests that the proposed model captures essential aspects of how the brain solves perceptual ambiguities in time. Our results point to the importance of the proposed principles of dynamic competi- tion, parallel specification, and selection of multiple alternatives through prediction, as well as active guidance of perceptual strategies for perceptual decision-making and the resolution of perceptual ambiguities. These principles could apply to both the simple perceptual decision problems studied in neuroscience and the more complex ones addressed by vision research.Peer reviewe

    Exact and Soft Successive Refinement of the Information Bottleneck

    Get PDF
    © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/The information bottleneck (IB) framework formalises the essential requirement for efficient information processing systems to achieve an optimal balance between the complexity of their representation and the amount of information extracted about relevant features. However, since the representation complexity affordable by real-world systems may vary in time, the processing cost of updating the representations should also be taken into account. A crucial question is thus the extent to which adaptive systems can leverage the information content of already existing IB-optimal representations for producing new ones, which target the same relevant features but at a different granularity. We investigate the information-theoretic optimal limits of this process by studying and extending, within the IB framework, the notion of successive refinement, which describes the ideal situation where no information needs to be discarded for adapting an IB-optimal representation’s granularity. Thanks in particular to a new geometric characterisation, we analytically derive the successive refinability of some specific IB problems (for binary variables, for jointly Gaussian variables, and for the relevancy variable being a deterministic function of the source variable), and provide a linear-programming-based tool to numerically investigate, in the discrete case, the successive refinement of the IB. We then soften this notion into a quantification of the loss of information optimality induced by several-stage processing through an existing measure of unique information. Simple numerical experiments suggest that this quantity is typically low, though not entirely negligible. These results could have important implications for (i) the structure and efficiency of incremental learning in biological and artificial agents, (ii) the comparison of IB-optimal observation channels in statistical decision problems, and (iii) the IB theory of deep neural networks.Peer reviewe

    Successive Refinement and Coarsening of the Information Bottleneck

    Get PDF
    We study two central aspects of information processing in cognitive systems: one is the ability to incorporate fresh information to already learnt models; the other is the “trickling” of information through the many layers of a cognitive processing pipeline. We investigate the extent to which these specific structures of cognitive processing impact their informational optimal limits. To do so, we present mathematical characterisations and low-dimensional numerical examples, which explore formal properties of the Information Bottleneck method: namely, how it relates to successive refinement, and successive coarsening of information.Peer reviewe

    Towards Information Theory-Based Discovery of Equivariances

    Full text link
    The presence of symmetries imposes a stringent set of constraints on a system. This constrained structure allows intelligent agents interacting with such a system to drastically improve the efficiency of learning and generalization, through the internalisation of the system's symmetries into their information-processing. In parallel, principled models of complexity-constrained learning and behaviour make increasing use of information-theoretic methods. Here, we wish to marry these two perspectives and understand whether and in which form the information-theoretic lens can "see" the effect of symmetries of a system. For this purpose, we propose a novel variant of the Information Bottleneck principle, which has served as a productive basis for many principled studies of learning and information-constrained adaptive behaviour. We show (in the discrete case) that our approach formalises a certain duality between symmetry and information parsimony: namely, channel equivariances can be characterised by the optimal mutual information-preserving joint compression of the channel's input and output. This information-theoretic treatment furthermore suggests a principled notion of "soft" equivariance, whose "coarseness" is measured by the amount of input-output mutual information preserved by the corresponding optimal compression. This new notion offers a bridge between the field of bounded rationality and the study of symmetries in neural representations. The framework may also allow (exact and soft) equivariances to be automatically discovered.Comment: 23 pages, 0 figure

    Leveraging Empowerment to Model Tool Use in Reinforcement Learning

    Get PDF
    © 2023, IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. This is the accepted manuscript version of a conference paper which has been published in final form at https://doi.org/10.1109/ICDL55364.2023.10364342Intrinsic motivation plays a key role in learning how to use tools, a fundamental aspect of human cultural evolution and child development that remains largely unexplored within the context of Reinforcement Learning (RL). This paper introduces “object empowerment” as a novel concept within this realm, showing its role as information-theoretic intrinsic motivation that underpins tool discovery and usage. Using empowerment, we propose a new general framework to model the utilization of tools within RL. We explore how maximizing empowerment can expedite the RL of tasks involving tools, highlighting its capacity to solve the challenge posed by sparse reward signals. By employing object empowerment as an intrinsically motivated regulariser, we guide the RL agent in simple grid-worlds towards states beneficial for learning how to master tools for efficient task completion. We will show how object empowerment can be used to measure and compare the effectiveness of different tools in handling an object. Our findings indicate efficient strategies to learn tool use and insights into the integration and modeling of tool control in the context of RL

    Towards Information Theory-Based Discovery of Equivariances

    Get PDF
    © 2023 H. Charvin, N. Catenacci Volpi & D. Polani.The presence of symmetries imposes a stringent set of constraints on a system. This constrained structure allows intelligent agents interacting with such a system to drasti- cally improve the efficiency of learning and generalization, through the internalisation of the system’s symmetries into their information-processing. In parallel, principled mod- els of complexity-constrained learning and behaviour make increasing use of information- theoretic methods. Here, we wish to marry these two perspectives and understand whether and in which form the information-theoretic lens can “see” the effect of symmetries of a system. For this purpose, we propose a novel variant of the Information Bottleneck prin- ciple, which has served as a productive basis for many principled studies of learning and information-constrained adaptive behaviour. We show (in the discrete case) that our ap- proach formalises a certain duality between symmetry and information parsimony: namely, channel equivariances can be characterised by the optimal mutual information-preserving joint compression of the channel’s input and output. This information-theoretic treatment furthermore suggests a principled notion of “soft” equivariance, whose “coarseness” is mea- sured by the amount of input-output mutual information preserved by the corresponding optimal compression. This new notion offers a bridge between the field of bounded ratio- nality and the study of symmetries in neural representations. The framework may also allow (exact and soft) equivariances to be automatically discovered.Peer reviewe

    Decoupled Sampling-Based Motion Planning for Multiple Autonomous Marine Vehicles

    Get PDF
    There is increasing interest in the deployment and operation of multiple autonomous marine vehicles (AMVs) for a number of challenging scientific and commercial operational mission scenarios. Some of the missions, such as geotechnical surveying and 3D marine habitat mapping, require that a number of heterogeneous vehicles operate simultaneously in small areas, often in close proximity of each other. In these circumstances safety, reliability, and efficient multiple vehicle operation are key ingredients for mission success. Additionally, the deployment and operation of multiple AMVs at sea are extremely costly in terms of the logistics and human resources required for mission supervision, often during extended periods of time. These costs can be greatly minimized by automating the deployment and initial steering of a vehicle fleet to a predetermined configuration, in preparation for the ensuing mission, taking into account operational constraints. This is one of the core issues addressed in the scope of the Widely Scalable Mobile Underwater Sonar Technology project (WiMUST), an EU Horizon 2020 initiative for underwater robotics research. WiMUST uses a team of cooperative autonomous ma- rine robots, some of which towing streamers equipped with hydrophones, acting as intelligent sensing and communicat- ing nodes of a reconfigurable moving acoustic network. In WiMUST, the AMVs maintain a fixed geometric formation through cooperative navigation and motion control. Formation initialization requires that all the AMVs start from scattered positions in the water and maneuver so as to arrive at required target configuration points at the same time in a completely au- tomatic manner. This paper describes the decoupled prioritized vehicle motion planner developed in the scope of WiMUST that, together with an existing system for trajectory tracking, affords a fleet of vehicles the above capabilities, while ensuring inter- vehicle collision and streamer entanglement avoidance. Tests with a fleet of seven marine vehicles show the efficacy of the system planner developed.Peer reviewe

    Learning epistemic actions in model-free memory-free reinforcement learning: experiments with a neuro-robotic model

    Get PDF
    Passive sensory processing is often insufficient to guide biological organisms in complex environments. Rather, behaviourally relevant information can be accessed by performing so-called epistemic actions that explicitly aim at unveiling hidden information. However, it is still unclear how an autonomous agent can learn epistemic actions and how it can use them adaptively. In this work, we propose a definition of epistemic actions for POMDPs that derive from their characterizations in cognitive science and classical planning literature. We give theoretical insights about how partial observability and epistemic actions can affct the learning process and performance in the extreme conditions of model-free and memory-free reinforcement learning where hidden information cannot be represented. We finally investigate these concepts using an integrated eye-arm neural architecture for robot control, which can use its effctors to execute epistemic actions and can exploit the actively gathered information to effiently accomplish a seek-and-reach task
    • …
    corecore