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Abstract: The information bottleneck (IB) framework formalises the essential requirement for efficient
information processing systems to achieve an optimal balance between the complexity of their
representation and the amount of information extracted about relevant features. However, since the
representation complexity affordable by real-world systems may vary in time, the processing cost of
updating the representations should also be taken into account. A crucial question is thus the extent to
which adaptive systems can leverage the information content of already existing IB-optimal representations
for producing new ones, which target the same relevant features but at a different granularity. We
investigate the information-theoretic optimal limits of this process by studying and extending, within
the IB framework, the notion of successive refinement, which describes the ideal situation where no
information needs to be discarded for adapting an IB-optimal representation’s granularity. Thanks in
particular to a new geometric characterisation, we analytically derive the successive refinability of
some specific IB problems (for binary variables, for jointly Gaussian variables, and for the relevancy
variable being a deterministic function of the source variable), and provide a linear-programming-
based tool to numerically investigate, in the discrete case, the successive refinement of the IB. We
then soften this notion into a quantification of the loss of information optimality induced by several-
stage processing through an existing measure of unique information. Simple numerical experiments
suggest that this quantity is typically low, though not entirely negligible. These results could have
important implications for (i) the structure and efficiency of incremental learning in biological
and artificial agents, (ii) the comparison of IB-optimal observation channels in statistical decision
problems, and (iii) the IB theory of deep neural networks.

Keywords: information bottleneck; successive refinement; unique information; incremental learning;
coarse-graining; Blackwell order; deep learning

1. Introduction
1.1. Conceptualisation and Organisation Outline

Consider the problem, for an information-processing system, of extracting relevant
information about a target variable Y within a correlated source variable X, under con-
straints on the cost of the information processing needed to do so—yielding a compressed
representation T. This situation can be formalised in an information-theoretic language,
where the information-processing cost is measured with the mutual information I(X; T)
between the source X and the representation T of it, while the relevancy about Y of the
information extracted by T is measured by I(Y; T). The problem thus becomes that of
maximising the relevant information I(Y; T) under bounded information-processing cost
I(X; T), i.e., we are interested in the information bottleneck (IB) problem [1,2], which, in
primal form, can be formulated as

arg max
q(T|X) :

T−X−Y, I(X;T)≤λ

I(Y; T). (1)

Entropy 2023, 25, 1355. https://doi.org/10.3390/e25091355 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e25091355
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0003-2563-0853
https://orcid.org/0000-0002-0114-3041
https://doi.org/10.3390/e25091355
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e25091355?type=check_update&version=1


Entropy 2023, 25, 1355 2 of 51

Here, the trade-off parameter λ controls the bound on the permitted information-processing
cost and thus, intuitively, the resulting representation’s granularity. The Markov chain
condition T − X−Y ensures that any information that the bottleneck T extracts about the
relevancy variable Y can only come from the source X. The solutions to (1) for varying λ
trace the so-called information curve, i.e., the λ-parameterised curve(

Iλ(X; T), Iλ(Y; T)
)

λ≥0 ⊆ R2, (2)

where Iλ(X; T) and Iλ(X; T) are defined by a bottleneck T of parameter λ (see the black
curve in the first figure in Section 2 below). This curve indicates the informationally optimal
bounds on the feasible trade-offs between relevancy I(Y; T) and complexity I(X; T) of the
representation T. In this sense, the IB method provides a fundamental understanding of
the informationally optimal limits of information-processing systems.

These limits are crucial for both understanding and building adaptive behaviour. For
instance, choosing X to be an agent’s past and Y to be its future leads it to extract the most
relevant features of its environment [3–6]. More generally, the IB point of view on modelling
embodied agents’ representations has been leveraged for unifying efficient and predic-
tive coding principles in theoretical neuroscience—at the level of single neurons [3,7–9]
and neuronal populations [9–13]—but also for studying sensor evolution [14–16], the
emergence of common concepts [17] and of spatial categories [18], the evolution of hu-
man language [19–21], or for implementing informationally efficient control in artificial
agents [22–24]. This line of research brings increasing support to the hypothesis that, partic-
ularly for evolutionary reasons, biological agents are often poised close to optimality in the
IB sense. It also provides a framework for both measuring and improving artificial agents’
performance.

However, one aspect of the IB framework conflicts with a crucial feature of real-
world systems: the informationally optimal limits that it describes only consider a given
representation T taken in isolation from any other one in the system. This point of view
a priori disregards the relationship between representations, which is crucial in real-world
information-processing systems. Thus, it is crucial to consider the following question:
does the relationship between a set of internal representations T1, . . . , Tn impact their
individual information optimality? In this paper, we are mostly interested in a specific
kind of relationship: when T1, . . . , Tn are successively produced in this order, and each new
Ti builds on both the previous representation Ti−1 and new information from the fixed
source X to extract information about the fixed relevancy Y. This scenario formalises the
incorporation of information into already learned representations—as is the case in developmental
learning, or, more generally, any kind of learning process that goes through identifiable
successive steps.

More precisely, consider an informationally bounded agent that extracts information
about a relevant variable Y within an environment X. If the agent is informationally optimal,
given an affordable complexity cost λ1, it must maximise the relevant information that it
extracts from the environment—resulting in a bottleneck representation T1, i.e., a solution
to (1) with parameter λ1. Then, assume that at, a later stage, the complexity cost that the
agent can afford increases to λ2 > λ1, while the goal is still to extract information about the
same relevant feature Y within the same environment X. To keep being informationally
optimal, the agent should thus update its representation so it becomes a bottleneck of
parameter λ2. Given this setting, the question we ask is: to which extent can the content
learned into T1 be leveraged for the production of T2? It is indeed not intuitively clear
that T2 should keep all the information from T1. An informal example is the fact that most
pedagogical curricula teach knowledge via successive approximations, where, at a more
advanced level, the content learned at the beginner level must sometimes be unlearned to
successively proceed further, even though it was perfectly reasonable—in our language,
informationally optimal—to deliver the first beginner sketch to students that would never
progress to learn the expert level.
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This question has been formalised, in the rate-distortion literature, with the notion
of successive refinement (SR) [25–29], which, in short, refers to the situation where several-
stage processing does not incur any loss of information optimality. More precisely, in
the context outlined above, there is successive refinement if the processing cost of first
producing a coarse bottleneck T1 of parameter λ1 and then refining it to a finer bottleneck
T2 of parameter λ2 > λ1 is no larger than the processing cost of directly producing a
bottleneck T2 of parameter λ2 without any intermediary bottleneck T1 (see Section 2.1 and
Appendix B.2 for formal definitions). The aim of this work is to push the understanding of
successive refinement in the IB framework [30–32] further, as well as to expand the analysis
to a quantification of the lack of SR, in cases where the latter does not hold exactly. We
start by leveraging general results in existing IB literature [33,34] to prove that successive
refinement always holds for jointly Gaussian (X, Y), and when Y is a deterministic function
of X. However, it is seems crucial, for further progress on more general scenarios, to design
specifically tailored mathematical and numerical tools. In this regard, we provide two
main contributions.

First, we present a simple geometric characterisation of SR, in terms of convex hulls of
the decoder symbol-wise conditional probabilities q(X|t), for t varying in the bottleneck
alphabet T . This characterisation is proven in the discrete case under an additional but
mild assumption of injectivity of the decoder q(X|T). This new point of view fits well with
an ongoing convexity approach to the IB problem [35–39] and might thus help develop
a new geometric perspective on the successive refinement of the IB. As an example, we
use this geometric characterisation to prove that SR always holds for binary source X and
binary relevancy Y. Moreover, this characterisation makes it straightforward to numerically
assess, with a linear program checking convex hull inclusions, whether or not two discrete
bottlenecks T1 and T2 achieve successive refinement. As we demonstrate with minimal
numerical examples, this can help in investigating the SR structure of any given IB prob-
lem, i.e., how successive refinement depends on the particular combination of trade-off
parameters λ1 and λ2.

Second, we soften [18] the traditional notion of successive refinement and study the
extent to which several-stage processing incurs a loss of information optimality. More
precisely, we propose to measure soft successive refinement with the unique information [40]
(UI) that the coarser bottleneck T1 holds about the source X, as compared to the finer one
T2. Explicitly, this UI is defined as the minimal value of Iq(X; T1|T2) over all distributions
q := q(X, T1, T2) whose marginals q(X, T1) and q(X, T2) coincide with the corresponding
bottleneck distributions (see Section 3.1 for details). As a first exploration of soft SR’s
qualitative features, we investigate the landscapes of unique information over trade-off
parameters, for again some simple example distributions p(X, Y). These landscapes seem
to unveil a rich structure, which was largely hidden by the traditional notion of SR, that
only distinguished between SR being present or absent. Among the general features
suggested by these experiments, the most significant are that (i) soft SR seems strongly
influenced by the trajectories of the decoders qλ(X|T) over λ; (ii) the UI often goes through
sharp variations at the bifurcations [41–44] undergone by the bottlenecks (in a fashion
compatible with the presence of discontinuities of either the UI itself, or its differential,
with regard to trade-off parameters); and (iii) the loss of information optimality seems
always small—more precisely, the global bound on the UI was observed to be typically
one or two orders of magnitude lower than the system’s globally processed information
(see Section 3.2 for formal statements). These three conclusions are phenomenological and
limited to our minimal examples, but they shed light on the kind of structure that can
be investigated by further research. They also suggest the relevance that developing this
theoretical framework might have for the scientific question that motivates it. In particular,
the link with IB bifurcations and the overall small loss of information optimality would, if
generalisable, have interesting consequences for the structure and efficiency of incremental
learning.
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As a side contribution, we draw along the paper formal equivalences between our
framework and other notions proposed in the literature, thus making the formal framework
also relevant to decision problems [40,45] and to the information-theoretic approach to deep
learning [46]. This flexibility of interpretation stems from the fact that even though our
formal framework crucially depends on the order of the bottleneck representations’ trade-
off parameters, it does not depend on the order in which these representations are produced.
Thus, a sequence of bottlenecks can be equally well interpreted as produced from coarsest
to finest—as is the case for the information incorporation interpretation outlined above—or
from finest to coarsest—as is the case in feed-forward processing. This conceptual unity
sheds light on the common formal structure shared by these diverse phenomena.

In the next Section 1.2, we review related work. After having established notations
and recalled some general notions in Section 1.3, we formally introduce the notion of the
successive refinement of the IB in Section 2.1, where we also prove successive refinability
in the case of Gaussian vectors and deterministic channel p(Y|X). We then present the
convex hull characterisation in Section 2.2, before using it to prove successive refinement
for the case of binary source and relevancy variables. The following Section 2.3 leverages
the convex hull characterisation to gather some first insights from minimal experiments.
These experiments suggest an intuition for defining soft successive refinement, which we
formalise in Section 3.1 through a measure of unique information [40], where we provide
theoretical motivations for our choice. This new measure is explored in Section 3.2 with
additional numerical experiments that highlight the general features described above. The
alternative interpretations of both exact and soft SR, in terms of decision problems and
feed-forward deep neural networks, are developed in Sections 4.1 and 4.2, respectively.
We then describe the limitations and potential future work in Section 5, and conclude in
Section 6.

1.2. Related Work

The notion of successive refinement has been long studied in the rate-distortion
literature [25–29]. However, classic rate-distortion theory [47] usually considers distortion
functions defined on the random variables’ alphabets, whereas the IB framework can be
regarded as a rate-distortion problem only if one allows the distortion to be defined on the
space of probability distributions [48]. Successive refinement thus needed to be adapted to
the IB framework, which was achieved starting from various perspectives.

In [30,31], successive refinement is formulated within the IB framework. Then, Ref. [32]
goes further by considering the informationally optimal limits of several-stage processing
in general, without comparing it to single-stage processing. In both these works, the
problem is initially defined in asymptotic coding terms, and only then given a single-
letter characterisation. On the contrary, we will directly define successive refinement
from a single-letter perspective. It turns out that our single-letter definition and the
operational multi-letter definition from [30,31] are equivalent. The two latter works—as
well as [32]—thus provide our single-letter definition with an operational interpretation
that also formalises the intuition of an informationally optimal incorporation of information
(see Proposition 1 and Appendix B.2).

Another notion named “successive refinement” as well can be found in [46]. This
work, instead of modelling information incorporation, rather considers the successive
processing of data along a feed-forward pipeline—which encompasses the example of
deep neural networks. Fortunately, the “successive refinement” defined in [46] happens to
encompass the notion we develop here; more precisely, in [46], the relevancy variable is
allowed to vary across processing stages, but if we choose it to be always the same, then
“successive refinement” as defined in [46] and “successive refinement” as defined here are
formally equivalent (see Section 4.2). In other words, the situation considered in this paper
is a particular case of [46], so our results, methods, and phenomenological insights are
directly relevant to [46]. For instance, our proof of SR for binary X and Y (see Proposition 5)
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is a generalisation of Lemma 1 in [46], which proves SR when X is a Bernoulli variable of
parameter 1

2 and p(Y|X) is a binary symmetric channel.
More generally speaking, the link between successive refinement and the IB theory of

deep learning [49–56] has been noted since the inception of the latter research agenda [49],
and, besides in [46], it was also further developed in [57]. Section 4.2 makes clear in
which sense our results are relevant to this line of research. In particular, our minimal
experiments suggest (if they are scalable to the much richer deep learning setting) that
trained deep neural networks should lie close to IB bifurcations: i.e., if X is the network’s
input, Y the feature to be learnt and L1, . . . , Ln the network’s successive layers, the points
(I(X; Li), I(Y, Li)) should lie close to points of the information curve corresponding to IB
bifurcations. This feature was already suggested in [49,50], but for reasons not explicitly
related to successive refinement. Note that while the phenomenon of IB bifurcations has
been studied from a variety of perspectives (see, e.g., [41–44]), here, we adopt that of [43],
which frames IB bifurcations as parameter values where the minimal number of symbols
required to represent a bottleneck increases.

In [58], successive refinability is proved for discrete source X and relevancy Y = X.
Our Proposition 3 generalises this result to either discrete or continuous source X, with
relevancy Y being an arbitrary function of X, with a similar argument as that in [58].

In [33], links between the IB framework and renormalisation group theory are exhib-
ited. Even though the questions addressed in the latter work are thus distinct from those
addressed here, the Gaussian IB’s semigroup structure defined and proven in [33] implies
the successive refinability of Gaussian vectors (see Proposition 2, and see Appendix 2 for
more details on the semigroup structure). This generalises Lemma 3 in [46], which proves
SR when X and Y are jointly Gaussian, but each one-dimensional (see Section 4.2 for the
relevance of [46] to our framework).

The geometric approach in which we propose to study the successive refinement of the
IB is closely related to the convexity approach to the IB [35–39], which frames the IB problem
as that of finding the lower convex hull of a well-chosen function. This formulation happens
to fit neatly with our convex hull characterisation of successive refinement; we use it to
apply the characterisation to proving successive refinability in the case of a binary source
and relevancy. Moreover, it is worth noting that our convex hull characterisation makes
successive refinement tightly related to the notion of input-degradedness [59], through which
additional operational interpretations can be given to successive refinement, particularly in
terms of randomised games.

The loss of information optimality induced by several-stage processing has already
been studied in [60] (see next paragraph), but a quantification of it based on soft Markovian-
ity was, to the best of our knowledge, only considered in [18]. Here, we take inspiration in
the latter work to quantify soft successive refinement, but we explicitly address the problem
that joint distributions over distinct bottlenecks are not uniquely defined. This leads us to
use the unique information defined in [40] within the context of partial information decom-
position [61–64] as our measure of soft SR. This unique information has tight links with
the Blackwell order [45,65], which allows us in Section 4.1 to provide a second alternative
interpretation of (exact and soft) successive refinement in terms of decision problems.

Ref. [60] proves the near-successive refinability of rate-distortion problems when the
distortion measure is the squared error. However, the latter work’s approach is different
from ours in two respects. First, the distortion measures are different: in particular, as
mentioned above, the IB distortion is defined over the space of probability distributions
on symbols, unlike the squared error, which is defined on the space of symbols itself.
Second, Ref. [60] quantifies the lack of SR as the respective differences between sequences
of optimal rates (for given distortion sequences) of a several-stage processing system and
the corresponding optimal rates (for the same distortions) of a single-stage processing
system. Here, we quantify the lack of SR with a single quantity: the unique information
defined by bottlenecks with different granularities. We are, at this stage, not aware of a link
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between this value of unique information and differences in one-stage and several-stage
optimal rates.

1.3. Technical Preliminaries

In this section, we fix the notations and conventions that we will use along the paper
and recall some general notions that we will need.

1.3.1. Notations and Conventions

The random variables are denoted by capital letters, e.g., X, their alphabets by calli-
graphic ones, e.g., X , and their symbols by lower-case letters, e.g., x. Sometimes, we will
mix upper- and lower-case notations to denote a family where some symbols vary, while
others are fixed, e.g., q(X|t) :=

(
q(x|t)

)
x∈X , or q(x|T) :=

(
q(x|t)

)
t∈T . Throughout the

whole paper, X is the fixed source and Y the fixed relevancy of the IB problem. The variable
T defined by the solution q(T|X) to the primal IB problem (1) is called a primal bottleneck.
We use the same symbol T for Lagrangian bottlenecks, i.e., variables defined by solutions
q(T|X) to the Lagrangian bottleneck problem (see Equation (3) below). By “bottleneck”
without further specification, we refer to either a primal or Lagrangian bottleneck. The
fixed source-relevancy distribution is denoted p(X, Y), and any distribution involving
at least one bottleneck is denoted with the letter q, e.g., q(X, Y, T). When it is necessary
to make the trade-off parameter explicit, we index the corresponding objects by λ, e.g.,
qλ(T|X) or Iλ(Y; T). Unless explicitly stated otherwise, the source X, relevancy Y, and any
considered bottleneck T are defined as either all discrete or all continuous. Probability
simplices, and sometimes some of their subsets are written using the generic symbol ∆; for
instance, the source simplex is denoted by ∆X .

Without loss of generality, we always restrict X, Y, and the bottleneck T to their re-
spective supports so that, in particular, all the conditional distributions are unambiguously
well-defined, both in the discrete and the continuous case.

We will denote by IY the function from R+ to R+ defined by IY(λ) := I(Y; T), where
T is a solution to the primal IB problem (1) for the parameter λ. The information curve,
defined above in Equation (2), is thus also the graph of the function IY.

1.3.2. General Facts and Notions

The following properties of the IB framework will be useful [35,37]:

• A bottleneck must saturate the information constraint, i.e., solutions T to (1) must
satisfy Iλ(X; T) = λ. In other words, the primal trade-off parameter is the complexity
cost of the corresponding bottleneck.

• The function IY : λ 7→ Iλ(T; Y) is constant for λ ≥ H(X). We will thus always
assume, without loss of generality, that λ ∈ [0, H(X)].

• In the discrete case, choosing a bottleneck cardinality |T | = |X | + 1 is enough to
obtain optimal solutions. Thus, we always assume, without loss of generality, that
|T | ≤ |X |+ 1, where |T | < |X |+ 1 might occur if needed to make T full support .

To compute bottleneck solutions, instead of directly solving the primal problem (1),
following common practice, we will solve its Lagrangian relaxation [66]:

arg min
q(T|X) : T−X−Y,

I(X; T) − β I(Y; T), (3)

where the complexity-relevancy trade-off is now parameterised by β ≥ 0, which corre-
sponds to the inverse of the information curve’s slope [41]. As the information curve is
known to be concave, the Lagrangian parameter β is an increasing function of the primal pa-
rameter λ = I(X; T). Moreover, we can, without loss of generality, assume that β ≥ 1 [43].
(Note that when the information curve is not strictly concave, the Lagrangian formulation
does not allow one to obtain all the solutions to the primal problem [39,67]. However,
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in our simple numerical experiments, we always obtained strictly concave information
curves.)

We will also need the following concepts [43]:

Definition 1. Let T be a (primal or Lagrangian) discrete bottleneck. The effective cardinality
k = k(T) is the number of distinct pointwise conditional probabilities q(X|t) for varying t.

Definition 2. A discrete (primal or Lagrangian) bottleneck T is a canonical bottleneck, or is in
canonical form, if all the pointwise conditional probabilities q(X|t) are distinct, i.e., equivalently,
if |T | = k(T), where k(T) is the effective cardinality of T.

Our definition of effective cardinality, even though slightly different from the original
one in [43], is equivalent to the latter for Lagrangian bottlenecks. And, importantly, every
(primal or Lagrangian) bottleneck can be reduced to its canonical form by merging the
symbols with identical q(X|t) (see Appendix A.1 for more details). We will be particu-
larly interested in the change of effective cardinality, which has been identified in [43] as
characterising the bottleneck phase-transitions, or bifurcations.

In Figure 1, we present examples of bottleneck conditional distributions q(X|T), vi-
sualised as the family of points {q(X|t), t ∈ T } on the source simplex ∆X , where, here,
|X | = 3, and the bottleneck is computed with |T | = 3 in both examples. However, in
Figure 1 (left), there are only two distinct q(X|t), so there must be two equal pointwise
probabilities q(X|t1) and q(X|t2); thus, k = 2 and the canonical form of T is obtained by
merging t1 and t2. On the contrary, in Figure 1 (right), there are three distinct q(X|t), so,
here, k = 3 and the bottleneck is already in canonical form.

Figure 1. Examples of distributions q(X|T), visualised as families of points {q(X|t), t ∈ T } on
the source simplex ∆X , where, here, |X | = 3. Each of the triangle’s vertices represents the Dirac
probability of some x ∈ X . The bottleneck’s effective cardinality is k = 2 on the left and k = 3 on
the right.

Eventually, the notions of consistency and extension will be crucial to us.

Definition 3. Let A := A1 × · · · × Am be a Cartesian product of (continuous or discrete)
alphabets. For C = {c1, . . . , cr} ⊆ {1, . . . , m} a subset of coordinates, we write

×
c∈C
Ac := Ac1 × · · · × Acr .

For each 1 ≤ i ≤ n, we consider a subset of coordinates Ci and a probability distribution qi
over×c∈Ci

Ac. The distributions q1, . . . , qn are said to be consistent if, for every 1 ≤ i, j ≤ n, the
respective marginals of qi and qj on their common coordinates×c∈Ci∩Cj

Ac are equal.
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For instance, if T1 and T2 are two bottlenecks, they define consistent distributions
q1(X, Y, T1) and q2(X, Y, T2) because, by definition, their respective marginals on their
common coordinates X ×Y are q1(X, Y) = q2(X, Y) = p(X, Y).

Definition 4. Let A := A1 × · · · × Am be a Cartesian product of (continuous or discrete) alpha-
bets, and q1, . . . , qn be consistent probability distributions over distinct but potentially overlapping
coordinates of A. A distribution q over the whole A is called an extension of the family of
distributions {q1, . . . , qn} if it is consistent with each qi.

Consider bottlenecks T1, . . . , Tn of same source X and relevancy Y for resp. parameters
λ1, . . . , λn. They define a consistent family of distributions {qλi (X, Ti), 1 ≤ i ≤ n}. One
of the central mathematical objects of this work is the set of their extensions into joint
distributions q(X, T1, . . . , Tn):

Notation 1. For given bottlenecks T1, . . . , Tn of respective parameters λ1, . . . , λn, we denote by
∆λ1,...,λn the set of extensions q(X, T1, . . . , Tn) of the family of distributions {qλi (X, Ti), 1 ≤ i ≤ n}.

In general, for a fixed family of bottlenecks, there is a multitude of possible ways to
extend them into a joint distribution; indeed, ∆λ1,...,λn traces a polytope on the simplex
∆X×T1×···×Tn of joint distributions (see Appendix A in [40]). This feature is the formal
version of our previous statement that the IB framework does not entirely specify the
relationship between representations T1, . . . , Tn: it only constrains it through the set ∆λ1,...,λn .
Questions about possible relationships between IB representations are thus questions about
properties of the set ∆λ1,...,λn .

2. Exact Successive Refinement of the IB
2.1. Formal Framework and First Results

Here, we formally describe, within the IB framework, the rate-distortion-theoretic no-
tion of successive refinement (SR) [25–27,29]. We propose a purely single-letter definition (i.e.,
we only consider single source, relevancy, and bottleneck variables), which makes the pre-
sentation simpler but still conveys the intuition of information incorporation. After having
presented the notion of SR in the IB framework, we describe its Markov chain characterisa-
tion (see Proposition 1), which mirrors the characterisation of SR for classic rate-distortion
problems [26], and makes our formulation equivalent to previous multi-letter operational
definitions, which also formalise the intuition of information incorporation [30–32]. We
then leverage this characterisation to prove SR in the case of Gaussian vectors and deter-
ministic channel p(Y|X).

Intuitively, there is successive refinement when a finer bottleneck T2 does not discard
any of the information extracted by a coarser bottleneck T1. This can be imposed by
requiring that T2 = (T1, S2) for some variable S2, which encodes the “supplement” of
information that “refines” T1 into T2. In the general case:

Definition 5. Let 0 < λ1 < · · · < λn, and a discrete or continuous p(X, Y) be given. There is
successive refinement (SR) for parameters (λ1, . . . , λn) if there exist variables (T1, S2, S3, . . . , Sn)
such that

• T1 is a bottleneck with parameter λ1;
• For every 2 ≤ i ≤ n, the variable Ti := (Ti−1, Si) is a bottleneck with parameter λi.

Note that even though it does not appear explicitly in this definition, the relevancy
variable Y is indeed crucial to it, as it defines what a bottleneck is (see Equation (1)).
If the conditions of Definition 5 hold, we will also say that the IB problem defined by
p(X, Y) is (λ1, . . . , λn)-refinable. If bottlenecks T1, . . . , Tn satisfy the definition’s conditions,
we will say that they achieve successive refinement, or, simply, that there is successive
refinement between these bottlenecks. If there is successive refinement for all combina-
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tions 0 < λ1 < · · · < λn of trade-off parameters, we will say that the corresponding IB
problem is successively refinable. Eventually, when it will be needed in later sections
to contrast this notion with that of soft successive refinement, we will refer to it as exact
successive refinement.

For instance, let 0 < λ1 < λ2 and X = Y = {0, 1}. We consider Y := X ⊕ Z, where
⊕ denotes the modulo-2 addition, and X and Z are Bernouilli variables with parameters
1
2 and a, respectively, for an arbitrary 0 ≤ a ≤ 1

2 . In this case, it is proven in Lemma 1
of [46] that, for well-chosen binary variables S1 and S2, we have that X, S1, and S2 are
mutually independent, and the variables X⊕ S1 and X⊕ S1 ⊕ S2 are bottlenecks of resp.
parameters λ1 and λ2. Moreover, using the independence of S2 with (X, X⊕ S1) and the
assumed Markov chain Y− X− X⊕ S1 ⊕ S2, a straightforward computation shows that to
get a bottleneck of parameter λ2, the variable X⊕ S1 ⊕ S2 can be replaced by (X⊕ S1, S2).
Thus, here, the IB problem is (λ1, λ2)-refinable, where successive refinement is achieved by
T1 := X⊕ S1 and T2 = (T1, S2).

It is helpful to visualise SR on the information plane, i.e., that on which lies the
information curve. Indeed, successive refinement can be understood in terms of specific
translations on the information plane: those resulting from concatenating an already
existing variable Ti−1 with a new variable Si—let us call them “accumulative translations”
because they result from a processing that does not discard any of the information already
collected. Let us focus on the case n = 2 and first note that, whether or not (T1, S2) is a
bottleneck, we have

I(X; T1, S2) = I(X; T1) + I(X; S2|T1),

and, similarly,

I(Y; T1, S2) = I(Y; T1) + I(Y; S2|T1).

In other words, the measure of both the complexity cost and relevance for (T1, S2) can
be decomposed into the same measures first for T1 and then for the “supplement” of infor-
mation S2, conditionally on the “already collected” information T1. In Figure 2 (left and
right), we first fix a coarse bottleneck T1, understood here as a point

(
I(X; T1), I(Y; T1)

)
on

the information curve. Once T1 is known, we supplement it with a new variable S2, which
incurs both an additional complexity cost I(X; S2|T1) and an additional relevant informa-
tion gain I(Y; S2|T1). The question of successive refinement is that of whether the additional
complexity cost can be leveraged enough for the resulting relevant information gain to take
(T1, S2) “up to the information curve”, i.e., to be such that

(
I(X; T1, S2), I(Y; T1, S2)) is on

the information curve. This is the case in Figure 2, right, and not the case in Figure 2, left.
In short, there is successive refinement between two points on the information curve if and
only if there exists an “accumulative translation” from the coarser one to the finer one.

Figure 2. Successive refinement visualised on the information plane. On the left, adding the infor-
mation from the variable S2 (the supplement variable) is not efficient enough to achieve successive
refinement. On the right, it is. See main text for details (the values of I(X; S2|T1) and I(Y; S2|T1) have
been chosen arbitrarily to illustrate each case).
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Let us now describe a more formal characterisation, where point (ii) will mirror the
characterisation of SR for classic rate-distortion problems [26].

Proposition 1. Let 0 < λ1 < · · · < λn. The following are equivalent:

(i) There is successive refinement for parameters (λ1, . . . , λn);
(ii) There exist bottlenecks T1, . . . , Tn, of common source X and relevancy Y, with respective

parameters λ1, . . . , λn, and an extension q(X, T1, . . . , Tn) of the qi := qi(X, Ti), such that,
under q, we have the Markov chain

X− Tn − · · · − T1. (4)

(iii) There exist bottlenecks T1, . . . , Tn, of common source X and relevancy Y, with respective
parameters λ1, . . . , λn, and an extension q(Y, X, T1, . . . , Tn) of the qi := qi(Y, X, Ti), such
that, under q, we have the Markov chain

Y− X− Tn − · · · − T1. (5)

Proof. See Appendix B.1. It is relatively straightforward because we started directly from
a single-letter definition.

Proposition 1 was already known to be a characterisation of SR of the IB [30–32].
However, as the latter references start from an operational problem in terms of asymptotic
rates and distortions for multi-letter systems, here, Proposition 1 shows that our single-letter
Definition 5 is equivalent to the operational definitions in [30–32]. See Appendix B.2 for
more details.

Remark 1. Crucially, the order of the indexing in (4) and (5) depends only on the order of the
trade-off parameters λ1 < · · · < λn, and not on the order in which the bottlenecks Ti are produced,
which is just the interpretation we started from. In particular, Proposition 1 makes equally legitimate
the interpretation of bottlenecks produced from the finest one to the coarsest one, each new bottleneck
thus implementing a further coarsening of the source X. This alternative interpretation renders
successive refinement relevant to feed-forward processing, including in particular the Blackwell
order (see Section 4.1) and deep neural networks (see Section 4.2). For ease of presentation, though,
we will stick to the information incorporation interpretation along most of the paper.

Moreover, from Proposition 1, we can leverage existing IB literature to prove the
successive refinability of two specific settings. (For an explicit definition of what we mean,
in Proposition 2, by successive refinement in the case of the Lagrangian IB problem, see
Appendix B.3.)

Proposition 2. If X, Y are jointly Gaussian vectors, then the Lagrangian IB problem defined by
p(X, Y) is (λ1, . . . , λn)-refinable for all λ1 < · · · < λn.

This result is a direct consequence of a property named a semigroup structure, and is
proven for the Gaussian IB framework in [33], which relates the latter framework with renor-
malisation group theory. The semigroup structure denotes, in short, the situation where
iterating the operation of coarse graining a variable by computing a bottleneck—where,
at each iteration, the previous bottleneck becomes the source of the next IB problem—still
outputs a bottleneck for the original problem. This semigroup structure is a stronger prop-
erty than successive refinement and, as it is satisfied in the Gaussian case, this implies the
successive refinability of Gaussian vectors (see Appendix B.3 for more details). Beyond
Proposition 2, this relationship between successive refinement and the semigroup structure
hints at potentially interesting links between the composition of coarse-graining operators
and successive refinement. In this respect, note that our numerical results below (see
Sections 2.3 and 3.2) suggest that, for non-Gaussian vectors, successive refinement does not
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always hold and thus, a fortiori, that the semigroup structure might not always be satisfied
in the IB framework—or at least not perfectly.

Eventually, in the case of deterministic channel p(Y|X), an explicit solution to the IB
problem (1) is known [34]: T = Y with probability α, and T = e with probability 1− α, for
e a dummy symbol, and some well-chosen 0 < α < 1. This specific solution allows one to
address successive refinement for the deterministic case:

Proposition 3. Let X be a discrete or continuous variable, and Y be a deterministic function of
X. Then, the IB problem defined by p(X, Y) is successively refinable for all trade-off parameters
λ1 < · · · < λn.

Proof. See Appendix B.4. A proof was already proposed, from an asymptotic coding
perspective, for discrete X and Y = X, in [58]. We use a similar argument here.

Note, though, that the solution used here to prove successive refinement is, as noted
in [34], not very interesting: it is nothing more than an increasingly noisy version of Y.
It is not clear whether or not there exists more interesting bottleneck solutions in the
deterministic case, and if so, whether these other solutions are successively refinable.
Proposition 3 will in any case be useful for our own purposes: we will use it to set aside the
deterministic case in the proof of SR for binary X and Y (Proposition 5 below).

Until now, we used existing results from the IB literature that, even though not
originally aimed at it, happen to yield interesting consequences for the problem of the
successive refinement of the IB. However, it seems crucial, for further progress on the latter
topic, to design specifically tailored mathematical and numerical tools. This is the purpose
of the following sections of this paper; in particular, in the next section, we present a simple
geometric characterisation of the IB’s successive refinability.

2.2. The Convex Hull Characterisation and the Case |X | = |Y| = 2

In this section, we present our convex hull characterisation of successive refinement.
We then show its relevance both to numerical computations—thanks to a linear program
for checking the condition—and to proving new mathematical results—which we exem-
plify by proving, thanks to this new characterisation, the successive refinability of binary
variables. Here, as in our subsequent numerical experiments in Section 2.3, we will focus
on discrete variables and n = 2 processing stages, even though our results are thought of
as a first step towards a generalisation to continuous variables and an arbitrary number of
processing stages.

The convexity approach that we propose hinges upon changing the perspective on the
IB problem (1) from an optimisation over the encoder channels q(T|X) to an optimisation
over the decoder channels q(X|T); indeed, (1) can be equivalently presented as the “reversed”
optimisation problem

arg max
(q(T),q(X|T)) :

∑t q(t)q(X|t)=p(X)
T−X−Y, I(X;T)≤λ

I(Y; T). (6)

Formulations (1) and (6) yield the same solutions because, through the Markov chain
T− X−Y, the joint distribution q(X, Y, T) is equivalently determined by specifying some
q(T|X) or specifying some pair

(
q(T), q(X|T)

)
that satisfies the consistency condition

∑t q(t)q(X|t) = p(X). This condition says that the source distribution p(X) must be
retrievable as a convex combination of the q(X|t), where the weights are given by the q(t).

Moreover, this formulation leads to a crucial intuition concerning the relationship
between successive refinement and the set HT := Hull{q(X|t), t ∈ T }, where, for a set
E ⊆ Rn, we denote by Hull(E) the convex hull of E, i.e., the set of points obtained as convex
combinations of points in E. First, note that, for a bottleneck T, the setHT is reduced to a
single point if and only if T is independent from the source X. Conversely,HT coincides
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with the whole source simplex ∆X if and only if T captures all the information from the
source, i.e., if I(X; T) = H(X). Generalising these extreme cases suggests the intuition that
HT describes the information content held by the bottleneck T about the source X. Now,
let us recall that successive refinement from a coarse bottleneck T1 to a finer bottleneck
T2 means intuitively that T2 can be obtained without discarding any of the information
extracted by T1 about the source X; in other words, that the information content of T1 about
the source X is included in that of T2. Combining this latter intuition with the one aboutHT
being the information content of a bottleneck T suggests the following characterisation of
successive refinement:

Hull{q(X|t1), t1 ∈ T1} ⊆ Hull{q(X|t2), t2 ∈ T2}, (7)

where T1 and T2 are bottlenecks of parameters λ1 < λ2, respectively. This condition is
visualised in Figure 3. The characterisation indeed holds, at least for the discrete case and
under a mild assumption of injectivity of the finer bottleneck’s decoder:

Proposition 4. Let 0 < λ1 < λ2, and assume that p(X, Y) is discrete.
If there is successive refinement for parameters (λ1, λ2), then there exist bottlenecks T1, T2 of

parameters λ1, λ2, respectively, such that the convex hull condition (7) is satisfied.
Conversely, if there exist bottlenecks T1, T2 of parameters λ1, λ2, respectively, such that the

convex hull condition (7) holds and such that the decoder q(X|T2), seen as a probability transition
matrix, is injective, then there is successive refinement for parameters (λ1, λ2). Moreover in this
latter case, if T1, T2 are bottlenecks that achieve successive refinement, the extension q̃(X, T1, T2) of
q(X, T1) and q(X, T2) such that X− T2 − T1 holds is uniquely defined.

Proof. See Appendix B.5. The idea consists in translating the Markov chain characterisation
X− T2 − T1 into the convex hull condition (7). The direct sense is straightforward. For the
converse direction, observe that, even though as soon as (7) is satisfied it provides a joint
distribution q̃(X, T1, T2) that satisfies the Markov chain X− T2 − T1, it is not clear whether
this distribution is consistent with q(X, T1). The potential problem stems from the fact that
q̃ must be such that the channel q̃(T2|T1) maps the marginal q(T1) to the marginal q(T2).
The injectivity assumption, however, provides a sufficient condition for it to be the case.
This assumption happens to also imply the uniqueness of the extension, among all those
that satisfy the Markov chain X− T2 − T1.

Figure 3. Illustration of the convex hull condition. The black triangle represents the source simplex
∆X with, here, |X | = 3, and the pointwise bottleneck decoder probabilities {q(X|t), t ∈ T } are
represented on it (in cyan for the coarser bottleneck T1 and in red for the finer one T2). The convex
hull of the respective families of points are shaded with the corresponding color. On the left, the
condition is not satisfied; on the right, it is.

Even though the injectivity assumption might seem restrictive, in practice, in our
numerical experiments below (see Sections 2.3 and 3.2), we always found that the decoder
channel q(X|T2) could be chosen as injective by reducing it to its effective cardinality (see
Section 1.3)—a process that leaves the convex hull condition (7) unchanged because it leaves
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the points q(X|t2) unchanged. See also Appendix D for a conjecture that, if true, would
simplify our convex hull characterisation in the case of a strictly concave information curve.

Remark 2. The convex hull condition happens to be equivalent to the input-degradedness pre-
order on channels (see Proposition 1 in [59]). Even though we will not develop this point further
when considering alternative interpretations of SR (Section 4), it is worth noting that, through
input-degradedness, SR can be given additional operational interpretations, particularly in terms of
randomised games (see Section IV-C in [59]).

Our new characterisation provides a simple way of checking whether or not two bot-
tlenecks T1 and T2 achieve SR. Recall that the Markov chain characterisation (Proposition 1,
point (ii)) shows that SR is a feature of the space ∆q1,q2 of all extensions q(X, T1, T2) of
individual bottleneck distributions q1(X, T1) and q2(X, T2). While this set might, a priori, be
difficult to study directly, our characterisation (7) reduces the problem to a simple geometric
property relating only two explicitly given conditional distributions: q(X|T1) and q(X|T2).
Moreover, note that (7) is equivalent to

∀t1 ∈ T1, q(X|t1) ∈ Hull{q(X|t2), t2 ∈ T2},

and that checking whether a point is in the convex hull of a finite set of other points can
be cast as a linear programming problem [68]. As a consequence, one can bound the time
complexity of checking condition (7) as O(|X |K), where K is the time complexity bound
of a linear program with 2|X |+ 2 variables and 3|X |+ 2 constraints. As a consequence,
using the bound on K proved in [69], the time complexity of checking (7) is no worse that
Õ(|X |ω+1 log( |X |δ )), where ω ≈ 2.38 corresponds to the complexity of matrix multiplica-
tion, δ is the relative accuracy, and the Õ(·) notation hides polylogarithmic factors (see
Appendix B.6 for details).

We deem this convex hull characterisation to be important for theory as well. Indeed,
it reduces the question of successive refinement to a question about the structure of the
trajectories, on the source probability simplex ∆X , of the points qλ(X|t) for varying λ. Thus,
any theoretical progress on the description of these bottleneck trajectories might lead to
theoretical progress on the side of successive refinement. As a first step in this direction,
we show that this geometric point of view helps to solve the question of SR in the case of a
binary source and relevancy (This result generalises the already known fact that there is
always successive refinement when X is a Bernoulli variable of parameter 1

2 and p(Y|X) is
a binary symmetric channel (see Lemma 1 in [46] and see Section 4.2 for explanations on
why the latter work’s framework encompasses ours). Moreover, a potential generalisation
of our result to an arbitrary number of processing stages is left to future work).

Proposition 5. If |X | = |Y| = 2, then, for any discrete distribution p(X, Y) and any trade-off
parameters λ1 < λ2, the IB problem defined by p(X, Y) is (λ1, λ2)-successively refinable.

Proof. Let us here outline the proof presented in Appendix B.7. The case of deterministic
p(Y|X) was already dealt with in Proposition 3, so we can assume that p(Y|X) is not
deterministic. In this case, the IB problem with |X | = |Y| = 2 and n = 2 has been
extensively studied in [35]. In short, the latter approach leverages the fact that a pair
(q(T), q(X|T)) is a solution to the IB problem (6) if the convex combination of the points
Fβ(q(X|t)), with weights given by q(T), achieves the lower convex envelope of the function
Fβ, where Fβ is a well-chosen function on the source simplex ∆X and β is the information
curve’s inverse slope. This work, along with considerations from [37], which uses the same
convexity approach, yields in particular that (i) the points qβ(X|t) are the extreme points
of a non-empty open segment uniquely defined by β, and (ii) this latter segments grows as
a function of the inverse slope β and thus, by concavity, as a function of λ. This implies
that the convex hull condition is always satisfied for λ1 < λ2. As point (i) also implies
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that, here, qλ2(X|T2) must be injective, Theorem 4 allows us to conclude the successive
refinability for n = 2 processing stages.

The proof of Proposition 5 exemplifies how our convex hull characterisation interlocks
well with the convexity approach to the IB [35–39]. In this sense, our characterisation brings
a new theoretical tool to the study of the successive refinement of the IB.

2.3. Numerical Results on Minimal Examples

In this section, we leverage our new convex hull characterisation to investigate suc-
cessive refinement on minimal numerical examples, i.e., with discrete and low-cardinality
distributions p(X, Y). Our experiments suggest that, in general, successive refinement does
not always hold exactly. However, they also highlight two other features: first, it seems
that successive refinement is often shaped by IB bifurcations [41–44]. Second, even though
successive refinement is often not satisfied exactly, visualisations suggest that it is often
“close” to being satisfied. The formalisation of this latter intuition will be the topic of the
next section.

We consider the Lagrangian form (3) of the IB problem (see Section 1.3). We compute
solutions to it with the Blahut–Arimoto (BA) algorithm [1], combined with reverse deter-
ministic annealing [19,70], starting from β ≈ ∞ (i.e., in practice, β� 1) at the IB solution
T = X (we noticed that regular deterministic annealing sometimes yielded sub-optimal
solutions because they followed sub-optimal branches at IB bifurcations [1,71], which
was not the case for reverse annealing). We always obtained that I(X; T) was a strictly
increasing function of the Lagrangian parameter β, so it makes sense to index the solutions
by λ = I(X; T) rather than β; for instance, in this section and Section 3.2, we will write
qλ(T|X) for our algorithm’s output for a β such that I(X; T) = λ.

In all our numerical experiments, after reducing a bottleneck T to its canonical form
(see Section 1.3), the decoder channel qλ(X|T) was injective. Therefore, thanks to Theorem 4,
the convex hull condition (7) being satisfied here does imply successive refinement. In
the remainder of the paper, we will thus use the convex hull condition as a proxy for
numerically assessing successive refinement (see Appendix D for more details on what we
mean by “proxy”). This condition can be investigated in two ways. First, for two distinct
trade-off parameters λ1 < λ2, we can compute whether the convex hull condition (7) holds
or not with the linear program described in Appendix B.6. Second, for |X | ≤ 3, we can
visualise the whole trajectories, for varying λ, of the points qλ(X|t) on the source simplex
∆X . As we will see, this yields interesting qualitative insights.

As a sanity check for our algorithm, we compute bottleneck solutions for binary X and
Y, which we proved in Proposition 5 to be successively refinable for all trade-off parameters.
We used the linear program to check the convex hull condition numerically for all pairs
λ1 < λ2 and for distributions p(X, Y) uniformly sampled on the joint probability simplex
∆X×Y . We find that the convex hull condition is indeed always numerically satisfied.

Then, we study the case |X | = |Y| = 3, once again uniformly sampling example
distributions p(X, Y) on ∆X×Y . Figures 4–6 show, for representative examples, visu-
alisations of the trajectories over λ of the qλ(X|t) (left)—which we will refer to as the
bottleneck trajectories—along with the corresponding computations of the convex hull
condition as a function of λ1 and λ2 ≥ λ1 (right)—which we will refer to as the SR
patterns (The correspodning p(Y|X) are plotted in Appendix E, and p(X) is shown in
Figures 4–6 (left). The explicit p(X, Y) corresponding to each of these paper’s figures
can be found at: https://gitlab.com/uh-adapsys/successive-refinement-ib/(accessed on
12 September 2023).

https://gitlab.com/uh-adapsys/successive-refinement-ib/
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Figure 4. Left: bottleneck trajectories for an example distribution p(X, Y) such that |X | = |Y| = 3,
i.e., trajectory of qλ(X|T), represented as the family of points {qλ(X|t), t ∈ T } on the source simplex
∆X , as a function of λ = I(X; T) (crosses: value of qλc (X|T) just before a symbol split at a critical
parameter λc, where the crosses’ color corresponds to the value of λc). The conditional distribution
qλ(X|T) is defined by the single point p(X) when λ = 0 (dark blue cross on the black square), or by
two distinct points between the first and second symbol splits (dark blue to cyan), or by three distinct
points after the second symbol split (cyan to red). Note the discontinuity of qλ(X|T) at each symbol
split (without the discontinuity, the trajectory around a symbol split would look like a branching).
Right: corresponding SR pattern, i.e., corresponding output for the convex hull condition (blue:
satisfied; red: not satisfied; dashed white lines: critical values λc(i) of either λ1 or λ2). For instance,
the critical value λc(2) ≈ 0.33 corresponds, on the bottleneck trajectories (left), to the symbol split
from two to three symbols (cyan crosses). Note that λc(1) ≈ 0. The respective p(Y|X) corresponding
to this figure and to Figures 5 and 6 are plotted in Appendix E.

Figure 5. Same as Figure 4, with a different example distribution p(X, Y) such that |X | = |Y| = 3.

Figure 6. Same as Figure 4, with a different example distribution p(X, Y) such that |X | = |Y| = 3.
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Let us first give a general description of the bottleneck trajectories. For λ ≈ 0, the
qλ(X|t) all coincide with the source distribution p(X). This should be the case, as, for
0 = λ = I(X; T), the bottleneck T is independent of X. Then, when λ increases, the
trajectories seem piecewise continuous, where each discontinuity corresponds to a symbol
split, i.e., a change in effective cardinality (see Section 1.3). We mark with a cross, for each
t ∈ T , the qλ(X|t) = qλc(X|t) located just before such a change in effective cardinality.

In the examples of Figures 4–6, as |X | = 3, there are two symbol splits, corresponding
to that from one to two and two to three symbols, respectively. Eventually, for large λ,
the last continuous segment of bottleneck trajectories corresponds to effective cardinality
k(Tλ) = |X |, and, for the maximal λ, each corner of the source simplex ∆X is reached by
q(X|t) for some t ∈ T . This means that for maximum λ, there is a deterministic bijective
relationship between T and X. The latter is expected: for maximum λ, bottlenecks are
minimal sufficient statistics of X for Y [72]; where for p(X, Y) sampled uniformly on the
simplex, these minimal sufficient statistics are, with probability 1, just permutations of X.

Definition 6. In the following, we refer to the piece of trajectory where the bottleneck’s effective
cardinality k = k(Tλ) is equal to the integer i as the “segment k = i”, i.e., it is the segment where
qλ(X|T) corresponds to exactly i distinct points on the source simplex ∆X ; for instance, in Figure 4,
the segment k = 2 corresponds to the first piece of trajectory spanning colors from dark blue to cyan.

Notation 2. We denote by λc(i) the trade-off parameter’s critical value corresponding to the i-th
change in effective cardinality, i.e., the symbol split from i to i + 1 symbols. Here, we will only need
to consider the critical values λc(1) = 0 and λc(2), corresponding to the splits from one to two and
two to three symbols, respectively.

Let us now come back to the question of successive refinement: for which parameters
λ1 < λ2 is the convex hull condition satisfied? The right-hand sides of Figures 4–6 provide
the answers corresponding to trajectories on the respective left-hand sides—where blue
and red mean that the condition is and is not satisfied, respectively. Moreover, we highlight
with dashed white vertical and horizontal lines the critical parameter values λ1 = λc(i)
and λ2 = λc(i), respectively, at which the symbol split occurs (see Appendix B.8 for details
on the computation of these symbols splits). Note that we always have λc(1) ≈ 0, which is
expected, as a bottleneck T corresponding to some λ = I(X; T) > 0 must necessarily define
at least two distinct qλ(X|t).

First, in these examples as in most non-reported examples, the convex hull condition
(right) breaks as long as λ2 < λc(2), i.e., as long as the finer bottleneck’s effective cardinality
is at most k = 2. This can also be read from the bottleneck trajectories (left): if the condition
was satisfied for all λ1 < λ2 < λc(2), for instance, then the segment k = 2 would be a line
segment. This is clearly not the case in Figures 4 and 6, and even though visually it virtually
seems to be the case in Figure 5, the segment k = 2 happens to be very slightly curved,
which is enough to break the convex hull condition. In other words, for λ1 < λ2 < λc(i),
several-stage processing seems to induce, in these examples, a nonzero loss of information
optimality.

Then, for λ2 > λc(2), even though there is no single general pattern, the trajectory’s
structure at the bifurcation seems to impact successive refinement. Indeed, at the bifurcation
at λc(2), the set Hull{qλ2(X|t), t ∈ T } opens up along a new, third dimension, and keeps
widening when λ2 increases. This allows it to (gradually in Figures 4 and 6, or virtually
straight away in Figure 5) encompass the segment k = 2 because it “overcomes” the
curvature of this piece of trajectory. For instance, in Figure 4, because the segment k = 2
is strongly curved, the convex hull condition gets satisfied for all λ1 < λc(2) only if λ2 is
significantly larger than λc(2). On the contrary, because in Figure 5, the segment k = 2 is
virtually not curved, it is almost as soon as λ2 > λc(2) that the convex hull condition is
satisfied for all λ1 < λc(2).
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In Figure 6, the lack of successive refinement for λ2 > λc(2) does not seem to be due to
the same phenomenon as the one just described. Generally speaking, we observed a whole
variety of SR patterns (see Appendix F for more examples), and our aim here is not to try
to interpret all of them. However, despite this diversity, the SR patterns that we studied
typically shared a common qualitative feature: the bifurcation structure of the bottleneck
trajectories seemingly participates in shaping these SR patterns. Mostly, it seems typically
necessary, for SR to hold, that the larger parameter λ2 has crossed the bifurcation value
λc(2), because the non-zero curvature of the segment k = 2 can only be “overcome” by
opening the set Hull{qλ2(X|t), t ∈ T } along a new dimension, through the symbol split at
λ2 = λc(2). This phenomenon will be explored in more details in Section 3.2.

Besides this relationship between SR and the structure of bottleneck bifurcations, this
numerical study suggests a generalisation of the notion of successive refinement. Indeed,
in Figure 5 for instance, even though the right-hand side asserts that successive refinement
does not hold for λ1 < λ2 < λc(2), the virtually linear piece of trajectory on the left-hand
side suggests that this is “almost” the case. In the next section, we formalise this intuition.

3. Soft Successive Refinement of the IB

The minimal experiments from Section 2.3 suggest the intuition that even though
successive refinement might not always hold exactly, when broken, it might still be “close”
to being satisfied. More generally speaking, let us recall that we are trying here to under-
stand the informationally optimal limits of several-stage information processing. As our
numerical experiments suggest that the IB problem is not always successively refinable,
it is desirable to quantify the lack of successive refinement—i.e., the lack of informational
optimality induced by several-stage processing. These considerations lead to the notion of
soft successive refinement [18], which we define and motivate in this section. As we will see,
this generalisation of exact SR does not depend on the specific structure of the IB setting;
rather, it can also be used as a generalisation of exact SR for any rate-distortion scenario.

3.1. Formalism

Let us first focus on the case n = 2: we thus want to quantify the amount of information
captured by a coarse bottleneck T1 and then discarded by a finer bottleneck T2. Let us
recall that, from Proposition 1, bottlenecks T1 and T2 achieve successive refinement if
there exists an extension q(X, T1, T2) of q1(X, T1) and q2(X, T2) such that, under q, we have
the Markov chain X − T2 − T1, which is equivalent to Iq(X; T1|T2) = 0. It thus seems
natural to quantify soft successive refinement with the conditional mutual information
Iq(X; T1|T2). However, the IB method does not entirely define the relationship between
distinct bottlenecks; formally, there is a whole polytope ∆q1,q2 ⊆ ∆X×T1×T2 of possible
extensions q(X, T1, T2) of q1(X, T1) and q2(X, T2) (see Section 1.3). Among these possible
extensions, it seems natural to search for those that minimise the violation of the SR
condition Iq(X; T1|T2) = 0. This leads us to use the unique information [40]

UI(X : T1 \ T2) := min
q∈∆q1,q2

Iq(X; T1|T2). (8)

This quantity was already defined in [40] in the context of partial information decom-
position [61–64], and it happens to be relevant to us for several reasons.

First of all, it depends only on the distributions q1(X, T1) and q2(X, T2), which are
indeed the only distributions provided by the IB framework. Second, from Proposition 1,
there is successive refinement if and only if there are two bottlenecks T1 and T2 such that
UIq1,q2(X : T1 \ T2) = 0. Third, it is thoroughly argued in [40] that (8) is a good measure of
the information that only T1, and not T2, has about X, which is an interpretation that coin-
cides neatly with the intuition that we want to operationalise here. Eventually, Proposition 6
below, which first requires some definitions, provides an information-geometric justification.
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Definition 7. For ∆ a probability simplex and E1, E2 ⊆ ∆, we define

DKL(E1||E2) := inf
r1∈E1, r2∈E2

DKL(r1||r2),

where DKL is the Kullback–Leibler divergence: DKL(r1||r2) := ∑a∈A r1(a) log
(

r1(a)
r2(a)

)
, if the

probability distributions r1 and r2 are defined on the discrete alphabet A.

Definition 8. The successive refinement set ∆SR,n ⊆ ∆X×T1×···×Tn is the set of distributions r
on X × T1 × · · · × Tn such that, under r, the Markov chain X− Tn − · · · − T1 holds.

Note that ∆SR,n does not require its elements to be extensions of any fixed bottle-
neck distributions qi(X, Ti) but imposes the Markov chain that characterises SR (see
Proposition 1). SR is achieved for bottlenecks q1(X, T1), . . . , qn(X, Tn) if and only if the
successive refinement set ∆SR,n and the extension set ∆q1,...,qn share a common distribution
q ∈ ∆SR,n ∩ ∆q1,...,qn . In general (for n = 2), the following proposition can easily be derived:

Proposition 6. For fixed distributions q1 = q1(X, T1), q2 = q2(X, T2), we have

UI(X : T1 \ T2) = DKL(∆q1,q2 ||∆SR,2). (9)

Proof. See Appendix C.1.

In this sense, UI(X : T1 \ T2) quantifies “how far” the joint distributions extending
the bottlenecks T1 and T2 are from making the successive refinement condition X− T2 − T1
hold true, where the “distance” is understood as a minimised Kullback–Leibler divergence.

Our new measure of soft SR is continuous:

Proposition 7 ([73], Property P.7). The unique information UI(X : T1 \ T2) is a continuous
function of the probabilities q1(X, T1) and q2(X, T2).

Remark 3. In particular, if UI(X : T1 \ T2) has a discontinuity as a function of the parameter
λ1 or λ2, which define the bottleneck distribution qλ1(X, T1) or qλ2(X, T2), respectively, then this
can only be a consequence of a discontinuity of the probability qλ1(X, T1) as a function of λ1 or
qλ2(X, T2) as a function of λ2, itself, respectively. This consideration will be useful for analysing
our numerical experiments in Section 3.2.

Moreover, the formulation (9) of unique information suggests a natural generalisation
to an arbitrary number of processing stages:

Definition 9. Let T1, . . . , Tn be bottlenecks with respective parameters λ1 < · · · < λn, and
qi(X, Ti) their respective individual distributions. One can quantify soft successive refinement,
or, equivalently, the lack of successive refinement, through the divergence DKL(∆q1,...,qn ||∆SR,n).

While [74] proposes a provably convergent algorithm to compute UI(X : T1 \ T2),
to the best of our knowledge, there currently exists no provably convergent algorithm to
compute DKL(∆q1,...,qn ||∆SR,n) for n > 2. Our numerical investigations (see Section 3.2)
will stick to the case n = 2, but this generalisation makes soft SR in particular, at least
conceptually for now, more relevant to deep learning (see Section 4.2).

For the sake of completeness, let us point out that for each λ, there is a whole set of
solutions qλ(T|X)—or, equivalently, qλ(X, T)—to the IB problem (1). Thus, the unique
information, which is defined as a function of specific bottleneck distributions q1(X, T1) and
q2(X, T2), could a priori not be uniquely defined by the corresponding trade-off parameters
λ1 and λ2. This subtlety is further explained in Appendix D, where we also formulate a
conjecture that would prove that, at least in the case of a strictly concave information curve,
the trade-off parameters do uniquely define the unique information.
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3.2. Numerical Results on Minimal Examples

A provably convergent algorithm that computes, in the discrete case, the unique
information (8), was provided in [74]. In this section, we use the authors’ implementation of
this algorithm (https://github.com/infodeco/computeUI, accessed on 12 September 2023)
to qualitatively investigate, on minimal examples, the landscapes of unique information
(UI) and their relationship to the bottleneck trajectories on the simplex.

In Figures 7–9 (left), we plot again the same bottlenecks trajectories as in
Figures 4–6 (left), but compare them this time with the unique information UI(X : T1 \ T2),
plotted as a function of λ1 and λ2 (right). We also plot, in Figures 10–12, some repre-
sentative examples of the exact SR patterns (left) and UI landscapes (right) for slightly
larger source and relevancy cardinalities, where p(X, Y) is, as above, uniformly sam-
pled — the explicit distributions p(X, Y) corresponding to Figures 10–12 can be found
at https://gitlab.com/uh-adapsys/successive-refinement-ib/. (see Appendix F for addi-
tional examples of comparison of the UI landscapes with bottleneck trajectories, and with
the exact SR patterns.) Once again, we highlight with dashed white vertical and horizontal
lines the critical parameter values λ1 = λc(i) and λ2 = λc(i), respectively, where, as
expected, λc(1) ≈ 0. We will first describe, for a fixed p(X, Y), the relative variations in
unique information as a function of λ1 and λ2. Then, we will compare the absolute values
of unique information to the information globally processed by the system.

For all Figures from Figures 7–9, the UI landscape partly mirrors the respective exact
SR pattern of Figures 4–6 (right). However, within the region where these latter figures
answered a binary “no” to the question of exact SR, Figures 7–9 reveal a sharply uneven
variation in the violation of SR, where, for important ranges of trade-off parameters, the
unique information is negligible comparative to others. For instance, even though Figure 5
(right) seems to indicate that SR does not hold for λ1 < λ2 < λc(2), the corresponding
UI in Figure 8 (right) is virtually zero on a large part of this set of parameters, while still
peaking for λ2 close to λc(2). This richer structure of the unique information landscape is
further evidenced by Figures 10–12.

Moreover, the unique information landscapes seem shaped by the bottleneck trajec-
tories. Most importantly, the influence of IB bifurcations on SR can be seen even more
clearly with soft than with exact SR. In particular, in Figures 10–12, it seems that along
the lines where one of the trade-off parameters crosses a critical value, the UI often goes
through discontinuities, or at least sharp variations in either λ1, λ2, or both directions.
In particular, even though patterns widely vary across different example distributions
p(X, Y), unique information can significantly drop when λ2 crosses a critical value from
below—a feature observed in both shown and non-shown examples. As we know that
the unique information is continuous, the apparent discontinuity should be one of the
bottleneck probability qλ2(X, T2) itself (see Proposition 7 and Remark 3). This is consistent
with the observation from Section 2.3 that, at symbol splits, the trajectory of qλ(X|T) often
seems to go through a discontinuity. Further, the fact that the sharp variation in UI is a
decrease in this quantity (in increasing order of λ2) is intuitively consistent with the fact that
the bottleneck trajectory’s discontinuity often induces a sudden “widening” (in increasing
order of λ) of

HT := Hull{q(X|t), t ∈ T }.

Indeed, for fixed λ1, when λ2 crosses a critical value from below, the corresponding
symbol split means thatHT2 “widens” by opening up a new dimension, so it “more easily”
encompassesHT1 , yielding as a consequence a drop in unique information. Recalling our
intuition (see Section 2.2) that HT describes the information content that a bottleneck T
contains about the source X, the feature just described can be interpreted in the following
way: the IB bifurcations seem to induce a sudden “expansion” (in increasing order of λ)
of the information content carried by the bottleneck about the source, which makes the
latter’s content more easily contain the information content of coarser bottlenecks.

https://github.com/infodeco/computeUI
https://gitlab.com/uh-adapsys/successive-refinement-ib/
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Figure 7. Left: example trajectory of qλ(X|T) as a function of λ = I(X; T) (crosses: value of qλc (X|T)
just before a symbol split at a critical parameter λc). Right: corresponding unique information, in bits
(color), expressed as a function of the pair of trade-off parameters (white dashed lines indicate critical
values λc(i) of either λ1 or λ2.). For instance, the critical value λc(2) ≈ 0.33 (right) corresponds, on
the bottleneck trajectories (left), to the symbol split from two to three symbols (cyan crosses). The
respective p(Y|X) corresponding to this figure and to Figures 8 and 9 are plotted in Appendix E.

Figure 8. Same as Figure 7, where the example distribution p(X, Y) is that of Figure 5.

Figure 9. Same as Figure 7, where the example distribution p(X, Y) is that of Figure 6.
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Figure 10. New example of an exact SR pattern and the corresponding UI landscape over trade-off
parameters λ1 < λ2, where, here, |X | = 5 and |Y| = 3. Left: exact SR pattern, i.e., output for the
convex hull condition (blue: satisfied, red: not satisfied). Right: corresponding UI landscape, in bits
(color). White dashed lines indicate critical values λc(i) of either λ1 or λ2. Note that (i) the binary
notion of exact SR (left) filters out most of the structure unveiled by UI (right), (ii) the UI landscape
seems highly impacted by IB bifurcations, and (iii) the UI is in any case always small, even though
not entirely negligible. See main text for more details.

Figure 11. Same as Figure 10, with a new example distribution p(X, Y), where, here, |X | = 5 and
|Y| = 3. Besides the white orthogonal dashed lines, other white dots correspond to values of (λ1, λ2)

for which the algorithm did not converge (see main text for a comment on this lack of convergence).

Figure 12. Same as Figure 10, with a new example distribution p(X, Y), where, here, |X | = 7 and
|Y| = 5.
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Note, however, that these simple numerical results do not allow one to discriminate
between the interpretation of the UI’s sharp variations at bifurcations as a discontinuity with
regard to trade-off parameters, or a discontinuity of the UI’s differential. For instance, if the
derivative with regard to λ2 discontinuously takes a value close to−∞ for λ2 slightly larger
than some λc, then the UI graph can seem discontinuous at finite numerical resolution, even
if, formally, only the UI’s differential is so. On the other hand, as an example, bifurcations
can be characterised precisely as points of discontinuities of the derivatives, with regard to
the trade-off parameter, of I(T; X) and I(T; Y) [43,75], even though the functions themselves
are continuous [2,75]. A more involved analysis distinguishing discontinuities of UI from
those of its differential is left to future work. In any case, the interpretation as a discontinuity
of the differential rests on a weaker assumption, which is still sufficient for explaining the
numerical results.

More generally, these results suggest that for a several-stage processing that is IB-
optimal at each stage, to minimise the information discarded along stages, the trade-off
parameters should rather lie close to well-chosen IB bifurcations. If this happens to be a
general feature of the IB framework, it would have implications for incremental learning.
Indeed, coming back to the modelling of embodied agents (see Section 1), for instance, it
would mean that organisms that are poised close to information optimality by evolution
should have a very specific structure of developmental learning, where the stages of
learning should be discrete and determined by the right trade-off parameters.

Eventually, a last crucial feature was also satisfied on these minimal examples: what-
ever the structure of bottleneck trajectories, the maximal UI was significantly lower than the
mutual information I(X; T1, T2) between the external source X and the system’s internal
representations (T1, T2). More precisely, for an extension q(X, T1, T2) of qλ1 := qλ1(X, T1)
and qλ2 := qλ2(X, T2) that achieves the minimum in (8), let us define

σ(qλ1 , qλ2) :=
UIqλ1

,qλ2
(X : T1 \ T2)

Iq(X; T1, T2)
.

Note that decomposing Iq(X; T1, T2), where q ∈ ∆q1,q2 , with the chain rule for mutual
information shows that this quantity only depends on qλ1 and qλ2 : thus here, σ(qλ1 , qλ2) is
indeed well-defined by qλ1 and qλ2 . The maximum ratio over all trade-off parameters λ1 <
λ2 was typically of the order of 1% in our minimal experiments; for instance, it was 1.89%,
0.39%, 1.82%, 2.03%, 1.34%, and 0.31% for the IB problems corresponding to Figures 7–12,
respectively. Among all the (shown and non-shown) studied examples, it never exceeded
5.4%, and we did not notice an increase in this maximum ratio when the source or relevancy
cardinalities were increased (the largest cardinalities that we experimented with were
|X | = 20, |Y| = 10). In short, even though several-stage processing might incur a non-
negligible loss of information optimality in the IB sense, these results suggest that this loss
could often be significantly limited. Of course, here as in Section 2.3, on the one hand, the
numerical results are purely phenomenological, and, on the other, it is at this stage far from
being clear that the qualitative insights brought by these minimal experiments generalise
well to more complex situations. However, they exhibit the potentially crucial qualitative
features of exact and soft successive refinement in the IB framework, which can be targeted
by further theoretical research.

4. Alternative Interpretations: Decision Problems and Deep Learning

The notion of successive refinement presented in this work builds on the intuition
of the optimal incorporation of information. However, alternative interpretations can be
given to the very same mathematical notion. First, thanks to the Sherman–Stein–Blackwell
theorem [45,65], the rate-distortion-theoretic notion of SR can be shown to be equivalent
to a specific order relation between the encoder of the finer bottleneck q(T2|X) and that of
the coarser one q(T1|X), namely the Blackwell order. This point of view turns SR into an
operational decision-theoretic statement; in short, there is SR when, for any task and any source
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distribution p(X), the optimal performance is better (or at least as good) when decisions are
based on the output of q(T2|X) than when they are based on the output of q(T1|X). Second,
the Markov chain (4) characterising successive refinement makes it directly relevant [46] to
the IB analysis of deep neural networks [49–56]. In the next two sections, we make these
connections explicit and relate them to this paper’s investigations.

4.1. Successive Refinement, Decision Problems, and Orders on Encoder Channels

Here, we show that exact and soft successive refinement can be, in the discrete case
at least, understood in terms of optimally solving decision problems on arbitrary tasks,
through orders on the encoder channels q(T|X) (or more precisely, pre-orders: i.e., we will
consider binary relations that are reflexive and transitive). We will rely on [45], where these
orders were considered.

Let us first make clear what we mean here by a decision problem. Consider a state
variable X over a finite set X , another finite setA of possible actions, and a reward function
u = u(x, a) that depends on both the value x of the state X, and the chosen action a ∈ A.
The agent’s observation is not the state X itself, but only the output T of X through some
stochastic channel κ := p(T|X) (where we assume here that the observation space T is
finite). To each observation-dependent policy π = π(A|T) corresponds an expected reward

Eπ(u(X, A)) := ∑
t

p(t)E(X,A)∼p(X|t)π(A|t)(u(X, A)),

where p(X|t) is determined from κ := p(T|X), p(X) through the Bayes rule, and p(X|t)
π(A|t) denotes the product measure of p(X|t) and π(A|t). Solving the decision problem
(p(X),A, u) for the observation channel κ means choosing a policy that yields an optimal
expected reward

R(p(X), κ, u) := max
π

Eπ(u(X, A)).

For instance, any Markov decision process can be seen as a decision problem as defined
above (for discrete time and finite state-space, number of possible actions at each state,
and horizon). In this case, X and T are the spaces of state trajectories and observation
trajectories, respectively, that an agent can go through along one episode; A is the space
of action sequences that can be chosen along the episode; and u is the cumulative reward,
i.e., the (potentially discounted) sum of rewards obtained at each time-step in the episode.
(See, e.g., [76] for more details on the terminology used in this example.)

We can now define the following order [45]:

Definition 10. For two channels κ and µ, we write κ wX µ, if, for any decision problem
(p(X),A, u), we have

R(p(X), κ, u) ≥ R(p(X), µ, u).

In short, κ wX µ means that, for any conceivable task based on any data distribution
p(X) over the fixed data space X , the observation channel κ can yield a performance at
least as good as that of the observation channel µ—if combined with a well-chosen policy.
The second order is the Blackwell order [65]:

Definition 11. For two channels κ and µ, we write κ w′X µ if there exists a channel η such that
µ = η ◦ κ, where “◦” denotes the composition of channels, i.e., such that Mµ = Mη Mκ , where Mµ,
Mη , and Mκ are the column transition matrices corresponding to µ, η, and κ.

It turns out that successive refinement can be characterised by either of these two
orders, thanks to the Sherman–Stein–Blackwell theorem [45,65]. In other words, SR, which
is a priori not a decision-theoretic statement, turns into one through its equivalence with the
Blackwell order:
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Proposition 8. Let 0 < λ1 < λ2. The following are equivalent:

(i) There is successive refinement for parameters (λ1, λ2).
(ii) There are bottlenecks T1, T2 of respective parameters λ1, λ2 such that

q(T2|X) wX q(T1|X).

(iii) There are bottlenecks T1, T2 of respective parameters λ1, λ2 such that

q(T2|X) w′X q(T1|X).

Proof. Using the Markov chain characterisation (point (ii) in Proposition 1), the result is
nothing more than a reformulation of Theorem 4 in [45] in the language of the present paper.
Note that, to use this theorem, we need to assume that the source X is fully supported, but
this is indeed an assumption that we are using along the whole paper because it does not
incur any loss of generality (see Section 1.3).

Let us highlight the intuitive meaning of Proposition 8. Point (ii) means that there is
SR when the coarse representation T1 can be retrieved by post-processing the finer repre-
sentation T2—which has implications in terms of feed-forward processing (see Section 4.2).

Now, the equivalence of SR with point (iii) relies on the mathematically deep part
of the Sherman–Stein–Blackwell theorem [45], and provides a new operational meaning
to SR. Namely, there is SR when, for any distribution p(X) on the source, and any reward
function, the optimal performance is at least as good when the decisions are based on the
output of q(T2|X), seen as an observation channel, than when they are based on the output
of q(T1|X). Let us stress that the fact that q(T2|X) defines a finer bottleneck than q(T1|X)
crucially depends on p(X, Y), i.e., on the specific source distribution p(X), and on how the
latter relates to the specific relevancy variable through p(Y|X). Proposition 8 shows that
SR describes a much more “universal” relation between the channels q(T1|X) and q(T2|X).

For example, assume that evolution poises the sensors of a given biological organism
at optimality in the IB sense [10,16], i.e., if X is the environment, S some sensor’s output
(e.g., a retina’s ganglion cells activation), and Y a behaviourally relevant feature (e.g., the
edibility of food), then S is a bottleneck for p(X, Y). Successive refinement here means
that if the sensor S2 is finer than S1 as a bottleneck for the fixed feature Y relevant to a
particular task, then S2 will afford to the organism—if combined with the right decision
making—better performances than S1 on any other task, for any other input distribution
p(X). In other words, S2 is then “universally better” than S1, which is a very strong (and
somewhat unexpected) generalisation.

Eventually, the unique information that we chose as our measure of soft SR has initially
been thought precisely as measuring the deviation from the order “wX ” (see arguments
in [45]). Unique information can thus, for instance, be understood as quantifying the
deviation from a finer IB-optimal sensor to be “universally better” than a coarser one.

4.2. Successive Refinement and Deep Learning

As suggested by Remark 1 and Proposition 8-(ii), successive refinement can be equally
well understood in terms of feed-forward processing, an interpretation which is particularly
relevant to deep neural networks. Indeed, while the information bottleneck theory of deep
learning [49–51] is still under debate [52–56], our results can be connected to some of this
theory’s specific claims concerning the benefits of hidden and output layers’ IB-optimality.

Let L1, . . . , Ln denote the successive layers of a feed-forward deep neural network
(DNN), which is fed with an input X and attempts to extract, within it, information about a
target variable Y,thus satisfying the Markov chain [49]

Y− X− L1 − · · · − Ln. (10)
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One of the claims of the IB theory of DNNs [49–51] is that, once converged, a DNN’s
hidden and output layers lie close to the information curve of the IB problem defined
by p(X, Y), with each new layer corresponding to a coarser trade-off parameter. The
performance and generalisation abilities of DNNs would rely on this IB-optimality of
networks after training. While these claims have been challenged [52,77], the identified
caveats have sparked a still ongoing line of research [54–56], which suggests that more
nuanced versions of the initial claims might still hold. Most importantly for us here,
numerical results suggest that layer-by-layer training with the IB Lagrangian as the loss
function induces a performance on par with end-to-end training with cross-entropy
loss [54], while recent theoretical work proved that the IB trade-off optimises a bound on
the generalisation error [56]. In other words, the IB method seems to be relevant at least as
a normative, if not descriptive, framework for DNNs. Thus, an interesting informationally
optimal limit to compare a given DNN to is a sequence of variables L1, . . . , Ln that

(i) Satisfy the Markov chain (10); and
(ii) Are each bottlenecks with source X and relevancy Y, for respective trade-off parame-

ters λ1 > · · · > λn.

However, it is not clear that variables satisfying those conditions even exist; actually, it is
the case if and only if the IB problem is (λn, . . . , λ1)-successively refinable. Indeed, points
(i) and (ii) are exactly the conditions of point (iii) in Proposition 1, with Ti := Ln−i, and the
order of trade-off parameters reversed as well. In this sense, the notion of exact successive
refinement is relevant to deep learning; in particular—as suggested by the numerical results
from Section 2.3—it might well be the case that there is successive refinement only for
well-chosen combinations of trade-off parameters. In this case, an IB-optimal DNN should
be designed and trained in such a way that its successive layers implement a compression
corresponding to these well-chosen trade-off parameters.

Remark 4. The single-letter formulation above mirrors, in large part, the asymptotic coding version
of [46]. More precisely, Ref. [46] defines in asymptotic coding terms a feed-forward processing
pipeline where each layer tries to extract, from the input coming from the previous layer, information
about a potentially distinct relevancy Yi. Theorem 2 in [46] shows that, for constant relevancy
Yi := Y, the notion of “successive refinement” defined there by the authors happens to be equivalent
to points (i) and (ii) above, and thus to our notion of “successive refinement”. In particular, the
deep learning interpretation presented in this section also has an operational formulation in terms of
asymptotic coding.

Now, if exact SR describes the situation where each layer of a DNN can potentially
reach the information curve, is our notion of soft SR also relevant to deep learning? Note
that, here,

• We know that the variables L1, . . . , Ln must satisfy X − L1 − · · · − Ln, i.e., we know
that the joint distribution q := q(X, Ln, . . . , L1) must be in ∆SR;

• And we want to know “how close” we can choose this joint distribution q to one whose
marginals q(X, L1), . . . , q(X, Ln) coincide with bottleneck distributions
q1 := q1(X, T1), . . . , qn := qn(X, Tn), respectively, of parameters λ1 > · · · > λn,
respectively, i.e., we want to know how close we can choose q to the set ∆q1,...,qn .

Thus, the quantity DKL(∆q1,...,qn ||∆SR,n) can also be interpreted as a measure of the defi-
ciency of a DNN’s layers from all those simultaneously being bottlenecks. Note, however,
that, in previous sections, we knew that any joint distribution q(X, T1, . . . , Tn) had to be in
the extension set ∆q1,...,qn , and wanted to know “how close” to the successive refinement
set ∆SR,n, in the KL sense, we could choose it. On the contrary, in the case of DNNs, we
know that any q(X, T1, . . . , Tn) must be in ∆SR,n—because the bottlenecks correspond to a
DNN’s layer—and want to know “how close” to ∆q1,...,qn we can choose it.

From this perspective, the numerical results of Section 3.2 suggest interesting prop-
erties, or at least desirable features, of DNNs. First, if the fact that the UI is typically low
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generalises well from our minimal investigation to the much richer deep learning setting,
this would imply that even in situations where a DNN’s successive layers cannot all lie
exactly along the information curve, they might still be able to remain reasonably close to
it. Second, the fact that UI (or its differential) seems to go through a discontinuity close to
well-chosen bifurcations—such that the UI sharply drops when λ2 crosses the bifurcation
from below—suggests that, for each layer of the DNN to be individually as IB-optimal
as possible, their corresponding trade-off parameters should each lie close to these IB
bifurcations. This resonates with previous considerations suggesting that DNNs’ hidden
layers should [49] or might indeed do [50] lie at IB bifurcations.

5. Limitations and Future Work

Our convex hull characterisation intertwines the question of exact SR with the more
fundamental question of the structure of decoder curves{(

λ 7→ qλ(X|t)
)
, t ∈ T

}
(11)

on the source simplex ∆X , a question for which the convexity approach to the IB prob-
lem [35–39] seems promising. In short, this approach reformulates the IB problem to that of
finding the lower convex envelope of a well-chosen function Fβ, defined on the source sim-
plex ∆X , and parameterised by the information curve’s inverse slope β (see Appendix B.7).
More precisely, bottlenecks are essentially characterised by the fact that the lower convex
envelope must be achieved by convex combinations of the points Fβ(q(X|t)); this approach
thus provides analytical tools for proving key properties of the set of trajectories (11), which
would then have consequences for SR through the convex hull condition. Despite the
limited scope of the result itself, the proof of Proposition 5 gives an example of such a
fruitful interaction, thus suggesting a way forward for further theoretical progress. As a
first step, one could try to use the convexity approach to the IB to prove our Conjecture 1
about the unicity, up to permutations and injectivity of q(X|T), for canonical bottlenecks
and the strictly concave information curve. This would both simplify our convex hull char-
acterisation of SR for the case of the strictly concave information curve (see Appendix D)
and provide in itself a crucial property of the curves (11). Generally speaking, leveraging,
through our convex hull characterisation, the convexity approach to the IB problem might
allow one to (i) identify new wholly refinable IB problems, but also (ii) produce general
methods to identify, for a given distribution p(X, Y), the combination of parameters for
which exact SR holds.

It must be stressed that even though we motivate the successive refinement of the IB by
diverse scientific questions in Sections 2 and 4, in this work, we do not model any concrete
system. Rather, our minimal numerical experiments target the qualitative exploration of
the formalised problem. Our results might in turn be relevant for future modelling work
(see the last paragraph of this section), but the most pressing aspect is to first develop
further the theoretical and computational framework. In particular, it seems important
to describe formally the apparent discontinuity of UI (or its differential) as a function
of the trade-off parameters λ1 and λ2 at IB bifurcations (through that of the qλ(X, T) as
functions of λ); to describe more formally why the UI tends to peak and then drop close
to IB bifurcations; to provide global bounds on UI in general or as functions of the source
and relevancy distribution p(X, Y); or to make formal the informal relationship between
the “extent to which” the convex hull condition is broken, and variations in UI. Another
interesting contribution would be to provide an asymptotic coding interpretation to unique
information; indeed, the deviation from successive refinement is more classically quantified
as a difference between asymptotic rates or distortions (see, e.g., [60]), and it is not clear
whether or not this interpretation can be made for UI. Numerically speaking, one could
design algorithms allowing for the computation of UI for continuous p(X, Y) and/or more
than two processing stages. Indeed, the algorithm from [74] only encompasses the case
of discrete variables and two processing stages. One could, for instance, take inspiration
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from [74] to formulate the quantity DKL(∆q1,...,qn ||∆SR,n) as a double minimisation problem
over separate parameters, allowing for an alternating optimisation algorithm.

The deep learning interpretation of (exact and soft) SR depends crucially on some
aspects of the ongoing debate on the IB theory of deep learning [49–52,54–56]. In this regard,
it would be interesting to directly measure the unique information between different layers
of a DNN or determine whether or not having the layers lying close to IB bifurcations does
induce better performance or generalisation capabilities.

Let us point out that our framework considers that the source of information X and the
target variable Y are the same along all processing stages. More general frameworks could
allow for variations in either the source of information (as in the case in temporal series) or
the target variable (as is the case in transfer learning). Frameworks for both these kinds
of extensions have already been proposed [46,78], and it would be interesting to study if,
in these cases as well, the specific nature of the IB problem imprints the informationally
optimal limits of several-stage processing.

Eventually, we deem the interpretation in terms of the incorporation of information
to be particularly relevant to modelling adaptive behaviour. For instance, for a given
developmental or skill-learning problem on a given task, our framework could help in
distinguishing situations where the choice of the successive representations’ complexity
along incrementally learning the task does not matter (i.e., when there is successive refine-
ment) from situations where these complexities must be minutely weighed, so as to avoid
as much as possible the “waste” of cognitive work along the way (i.e., when the unique
information is not negligible and unevenly distributed). In the latter case, our framework,
once mature, might precisely describe those sequences of representations’ complexity that
minimise the “waste” of cognitive work from one learning stage to another, thereby po-
tentially identifying key stages of skill or developmental learning. Future work should
keep in mind the horizon of identifying such qualitative features and producing measures
capturing the relevant phenomena for experimental research in these areas.

6. Conclusions

Our approach in this paper is three-fold: to bring together in a common framework
existing work on the exact successive refinement of the IB and related topics; to develop
further this common framework, particularly through a geometric approach to the problem;
and to then open up a line of research on the soft successive refinement of the IB.

The formal unity that we make explicit in this paper is mainly that between these
three scientific questions: (i) that of informationally optimal incorporation of information—
relevant in particular to developmental and skill learning; (ii) that of informationally
optimal feed-forward processing—relevant in particular to describing and designing deep
neural networks (DNNs); and (iii) that of channel order in statistical decision theory—
which provides clear interpretations of distinct bottlenecks’ comparison in terms of univer-
sal informativeness of an agent’s sensor. Indeed, while we focused for most of the paper on
the information incorporation interpretation, we saw in Section 4 that the two other ones
are as legitimate as the first one.

Once the formal problem is motivated and set, we turn to the mathematical analysis
of it. We first note that, for jointly Gaussian vectors (X, Y) or for deterministic p(Y|X),
successive refinability can be easily drawn from existing IB literature [33,34]. Then, we
propose a new geometric characterisation of SR, which builds on the intuition that what is
“known” by a bottleneck is the convex hull of its decoder conditional probabilities. This
new point of view, associated with an active approach that reformulates the IB problem
as that of finding the lower convex envelope of a well-chosen function [35–39], provides
a new tool for theoretical research on this topic. We exemplify this potential fertility by
proving, thanks to the combination of our convex hull characterisation with the convexity
approach to the IB, the successive refinability of binary source X and binary relevancy Y
(Proposition 5). This convex hull characterisation also allows one to numerically investigate
SR with a linear program, which can be helpful for computational studies on this topic.
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Our own minimal numerical experiments suggest that (i) successive refinement does not
always hold for the IB, (ii) the successive refinement patterns are shaped by IB bifurcations,
and (iii) even when successive refinement seems to break, sometimes it is “close” to being
satisfied, in the sense of the convex hull condition being only “slightly” violated.

To formalise this latter intuition, we propose to soften the traditional notion of SR into
a quantification of the loss of information optimality incurred by several-stage processing.
For that purpose, we call on the measure of unique information (UI) used in [40]. Intuitively,
this quantity measures the information that only the coarser bottleneck T1, and not the
finer one T2, holds about the source X, and it can be generalised to an arbitrary number of
processing stages. Our minimal experiments, in the case of two processing stages, unveil
a rich structure of soft SR that was partially hidden by exact SR, which only makes the
distinction between vanishing UI (if there is SR) and positive UI (if there is no SR). Even
though the UI landscapes depend strongly on the distribution p(X, Y) that defines the
IB problem, some qualitative features seem to emerge: (i) the “more” the convex hull
condition is broken, the higher the unique information; (ii) the IB bifurcations crucially
shape the UI landscape, with sharp decreases in unique information in particular when
the finer trade-off parameter λ2 crosses a bifurcation critical value; and (iii) in any case,
this violation of successive refinement seems to always be mild compared to the system’s
globally processed information.

The features exhibited by these numerical experiments offer a “first outlook” of
potentially general properties of exact and soft successive refinement for the IB problem,
thus providing a guide for future theoretical research. These potential properties might
provide interesting perspectives on the scientific questions that motivate the formalism,
particularly in terms of the incorporation of fresh information into already learned models,
and deep learning. For instance, the apparently important role of bifurcations in exact and
soft successive refinement suggests that informationally optimal several-stage learning or
processing should ideally be organised along well-chosen “checkpoints” on the information
plane. Moreover, if the loss of information optimality induced by this sequential processing
is indeed typically low (even though not entirely negligible) for the IB framework, this
could be taken as an indication that incremental learning might be made highly efficient.
These potential features thus provide a strong incentive to bring the formal framework
presented here closer to maturity—for instance, along the lines of research proposed in
Section 5.
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Abbreviations
The following abbreviations are used in this manuscript:

IB Information Bottleneck
SR Successive Refinement
UI Unique Information
DNN Deep Neural Network

Appendix A. Section 1 Details

Appendix A.1. Effective Cardinality

In [43], the effective cardinality of a Lagrangian bottleneck T is defined as the num-
ber of distinct q(Y|t), whereas it is defined as that of distinct q(X|t) in our Definition 1.
However, as mentioned in Section 1.3, both choices happen to be equivalent:

Proposition A1. Let q(T|X) be a fixed solution to the Lagragian IB problem (3) for some β, where
p(X, Y) is discrete. The number of distinct q(X|t) and that of distinct q(Y|t) are equal.

Proof. It is proven in [1] that a solution to the Lagrangian IB must satisfy for all t ∈ T ,
x ∈ X the self-consistent equation

q(t|x) =
q(t)
Z(x)

exp
(
− β DKL(p(Y|x) || q(Y|t))

)
, (A1)

where Z(x) is the normalisation factor, and

q(t) := ∑
x

q(t|x)p(x), (A2)

q(y|t) := ∑
x

p(y|x)q(x|t), (A3)

with

q(x|t) :=
q(t|x)p(x)

q(t)
. (A4)

If q(Y|t1) = q(Y|t2), then (A1) implies that q(t1|X) = q(t2|X), which, combined
with (A2), implies that we also have q(t1) = q(t2). These two new equalities, combined
with (A4), then prove that q(X|t1) = q(X|t2). Conversely, if q(X|t1) = q(X|t2), then
Equation (A3) proves that q(Y|t1) = q(Y|t2).

Crucially, it is proven in [43] that a given Lagrangian bottleneck T can be reduced to
effective cardinality while still being a bottleneck for the same trade-off parameter β by
merging all bottleneck symbols t1 . . . , tr with equal decoder distributions q(X|t1) = · · · =
q(X|tr) into a new symbol [t] defined by

q([t]|x) :=
r

∑
i=1

q(ti|x).

Moreover, this merging can also be carried out for primal bottlenecks (this is not a direct
consequence of Proposition A1, as it is known that when the information curve is not strictly
concave, the primal and Lagrangian problems might not be exactly equivalent [39,67]).

Proposition A2. Let T be a primal bottleneck of parameter λ, i.e., a solution to (1), where p(X, Y)
is discrete. The bottleneck obtained from T by merging the symbols t with identical q(X|t) is still a
solution to (A38) for the same parameter λ.
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Proof. We will use the following reparametrisation of the IB problem (1) (see Section 2.2):

arg max
(q(T),q(X|T)) :

∑t q(t)q(X|t)=p(X)
T−X−Y, I(X;T)≤λ

I(Y; T). (A5)

We thus consider the bottleneck T from Proposition A2’s statement as defined by a pair
(q(T), q(X|T)) satisfying ∑t q(t)q(X|t) = p(X). Now, assume that there exist t1, t2 ∈ T
such that q(X|t1) = q(X|t2). Then,

∑
x

q(x|t1) log
(

q(x|t1)

p(x)

)
= ∑

x
q(x|t2) log

(
q(x|t2)

p(x)

)
,

so that

I(X; T) = ∑
t,x

q(t)q(x|t) log
(

q(x|t)
p(x)

)
= αt1,t2 ∑

x
q(x|t1) log

(
q(x|t1)

p(x)

)
+ ∑

t/∈{t1,t2}, x
q(t)q(x|t) log

(
q(x|t)
p(x)

)
,

(A6)

where αt1,t2 := q(t1) + q(t2). Moreover,

q(Y|t1) = ∑
x

q(x|t1)p(y|x) = ∑
x

q(x|t2)p(y|x) = q(Y|t2),

so that, similarly,

I(Y; T) = αt1,t2 ∑
y

q(y|t1) log
(

q(y|t1)

p(y)

)
+ ∑

t/∈{t1,t2},y
q(t)q(y|t) log

(
q(y|t)
p(y)

)
. (A7)

Eventually,

p(X) = ∑
t

q(t)q(X|t) = αt1,t2 q(X|t1) + ∑
t/∈{t1,t2}

q(t)q(X|t), (A8)

where the first equality comes from the fact that (q(T), q(X|T)) is a solution to (A5) (so, in
particular, it must satisfy the hard constraints required in the optimisation problem). Let us
define the bottleneck T̃ on T̃ := T \ t2 by

q̃(t) :=

{
αt1,t2 if t = t1

q(t) if t ∈ T \ {t1, t2},

and, for all t ∈ T \ {t2},

q̃(X|t) := q(X|t).

The last line of (A6) can then be rewritten as

I(X; T) = q̃(t1) ∑
x

q̃(x|t1) log
(

q̃(x|t1)

p(x)

)
+ ∑

t/∈{t1,t2}, x
q̃(t)q̃(x|t) log

(
q̃(x|t)
p(x)

)

= ∑
t∈T̃ x∈X

q̃(t)q̃(x|t) log
(

q̃(x|t)
p(x)

)
= I(X, T̃).

Similarly, from (A7), we obtain I(Y; T̃) = I(Y; T), while from (A8), we have ∑t q̃(t)q̃(X|t) =
p(X). In other words, T̃ is also a solution to the reparametrised primal bottleneck problem
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(A5), for the same parameter λ. Moreover, it is clear that our definition of (q̃(T), q̃(X|T))
implies that q̃(t1|x) = q(t1|x) + q(t2|x) and q̃(t|x) = q(t|x) for t ∈ T \ {t1, t2}, so T̃ is the
variable obtained from T by merging the symbols t1 and t2. The result follows by iterating
this argument until all the q̃(X|t) are distinct.

Appendix B. Section 2 Details

Appendix B.1. Proof of Proposition 1

(i)⇒ (ii): Suppose that there are variables T1 and Ti := (Ti−1, Si) for 2 ≤ i ≤ n such
that each Ti is a bottleneck with parameter λi. Unrolling the iterative definitions of the Ti,
we obtain

Ti = (T1, S2, . . . , Si),

which implies that, if j < i, then Tj is a deterministic function of Ti; in other words, given
Ti, the variable Tj is independent of any other variable. So, first, we have X − Tn − Tn−1.
Now, assume that for a given i, we have

X− Tn − · · · − Ti. (A9)

Given Ti, the variable Ti−1 is independent of any other variable, so, in particular,

(X, Tn, . . . , Ti+1)− Ti − Ti−1. (A10)

The Markov chains (A9) and (A10) together imply that

X− Tn − · · · − Ti−1.

Thus, a recurrence from i = n to i = 1 proves that we do have X − Tn − · · · − T1,
where, by assumption, each Ti is indeed a bottleneck of parameter λi.

(iii)⇒ (i): For all i, the Markov chain (5) implies that

I(X; Ti) = I(X; T′i ),

I(Y; Ti) = I(Y; T′i ),

where T′i := (Ti, . . . , T1). The Markov chain (5) also implies that these T′i satisfy Y− X− T′i .
Thus, the T′i are also bottlenecks with respective trade-off parameters λ1, . . . , λn. But, by
construction, they satisfy T′i = (T′i−1, Si), where, here, Si := Ti.

(ii)⇒ (iii). We merely define q(X, T1, . . . , Tn, Y) through the density

q(x, t1, . . . , tn, y) := q(x, t1, . . . , tn)q(y|x).

From this construction and the fact that each individual bottleneck must by definition
satisfy Y− X− Ti, it is clear that q(X, T1, . . . , Tn, Y) is indeed an extension of the individual
bottleneck probabilities q(X, Y, Ti). Moreover, by construction, we have

Y− X− (Tn, . . . , T1).

This latter Markov chain, combined with the assumed Markov chain (4), together
imply that the Markov chain (5) holds.

Appendix B.2. Operational Interpretation of Successive Refinement

This section describes the operational interpretation—for the case of discrete variables
X,Y—of successive refinement, which was already proposed in [30,31], as well as, in a
slightly more general fashion, in [32]. We will here rely on the content from the latter work
(even though our notations will be different). We will denote, for a variable Z, by Zl , the
concatenation of l i.i.d. variables with the same law as Z.
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Definition A1. For l ∈ N, an n-stage (l, M1, . . . , Mn)-code consists of n encoder functions

φl
i : X l → {1, . . . , Mi}

and n decoder functions

ψl
i : {1, . . . , M1} × · · · × {1, . . . , Mi} → Y l .

For a given source X, the i-th output of the (l, M1, . . . , Mn)-code will be written

Ŷl
i := ψl

i (φ
l
1(Xl), . . . , φl

i (Xl)).

Intuitively, each new encoder extracts additional information from the same source,
and, crucially, each new decoder is allowed to rely on all the information encoded until the
i-th stage. Note that the output space of the decoder is modelled on that of the relevancy
variable because this is the one about which one wants to extract information.

Definition A2. The relevance-complexity region is the set of tuples (R1, . . . , Rn, µ1, . . . , µn)
such that there exists a sequence of n-stage (l, M1, . . . , Mn)-codes for all 1 ≤ i ≤ n,

∀l ∈ N,
1
l

log Mi ≤ Ri

and

∀l ∈ N,
1
l

I(Yl ; Ŷl
i ) ≥ µi.

Intuitively, for a tuple to be in the relevance-complexity region, there must be an
n-stage code such that the i-th encoder adds information at a rate no larger than Ri, and
the i-th decoder yields information about the target variable Y no lower than µi. In other
words, the relevance-complexity region is made of all the tuples that are achievable by
n-stage codes.

Now, let us give the operational definition of successive refinement. We will denote,
for a parameter λ, by IY(λ), the maximum value of I(Y; T) in the primal IB problem (1).

Definition A3. Let 0 ≤ λ1 < · · · < λn. An IB problem defined by p(X, Y) is said to be
operationally successively refinable, or O-SR, for rates (λ1, . . . , λn), if the tuple

(λ1 , λ2 − λ1 , . . . , λn − λn−1, IY(λ1), . . . , IY(λn))

is in the relevance-complexity region.

Intuitively, in the case n = 2, assume one is given a total rate λ2 to “spend” on encoding
a source X. One can choose to encode the source in a single processing stage, yielding at
best, after decoding, asymptotic relevant information IY(λ2) (see [2]). Alternatively, one can
choose to break up the total rate λ2 into two rates R1 := λ1 < λ2 and R2 := λ2 − λ1, and
successively encode potentially different aspects of the source at these rates. Operational
SR means that even though this second alternative “spends” the total rate λ2 along two
distinct stages, it can still, after decoding, also yield asymptotic relevant information of
IY(λ2). Naturally, in this case, the relevant information decodable from only the first stage
must also be the optimal one, i.e., IY(λ1)—otherwise, the “waste” in spending the rate λ1
would prevent the second-stage decoder, which partially relies on the information encoded
at the first stage, from ever achieving the optimal relevant information IY(λ2).

We then have the following single-letter characterisation:
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Proposition A3. The IB problem defined by p(X, Y) is O-SR for rates (λ1, . . . , λn) if and only if
there exist variables T1, . . . , Tn such that

(i) We have the Markov chain Y− X− Tn − · · · − T1;
(ii) The variables T1, . . . , Tn are each bottlenecks with respective parameters λ1, . . . , λn.

Proof. This single-letter characterisation is a consequence of Remark 1 in [32], which states
the following: a tuple (R1, . . . , Rn, µ1, . . . , µn) is in the relevance-complexity region if and
only if there exist variables T1, . . . , Tn such that the Markov chain Y − X − Tn − · · · − T1
holds, and such that, for all i = 1, . . . , n,

i

∑
j=1

I(X; Tj|T1, . . . , Tj−1) ≤
i

∑
j=1

Rj, (A11)

I(Y; Ti) ≥ µi. (A12)

By simplifying the left-hand side in (A11) through the chain rule for mutual informa-
tion, defining λi := ∑i

j=1 Rj, and applying the statement with µi := IY(λi), we obtain that
the IB problem is O-SR for rates (λ1, . . . , λn) if and only if there exist variables T1, . . . , Tn
such that

1. We have the Markov chain Y− X− Tn − · · · − T1; and
2. We have, for all i = 1, . . . , n,

I(X; Ti) ≤ λi, (A13)

I(Y; Ti) ≥ IY(λi). (A14)

However, if point 1 above holds, then, particularly for all i = 1, . . . , n, we have the
Markov chain Y − X − Ti. As a consequence, by definition of the primal IB problem (1),
the inequality in (A14) can be replaced by an equality, and thus point 2 as a whole can be
replaced by the condition that Ti is a bottleneck of parameter λi for the IB problem defined
by p(X, Y). Hence, we are left with points (i) and (ii) of Theorem A3’s statement.

It is worth mentioning that our Proposition A3 is also essentially Theorem 7 in [30],
which proves the same single-letter characterisation for the same operational problem—up
to the difference that the result is limited to n = 2, and that the latter work does not consider
any decoder functions ψl

i . Moreover, Proposition A3 is a consequence of Lemma 4 in [31].
It is clear that the conditions of Theorem A3 are exactly those of Proposition 4-(iii),

so the operational Definition A3 and the single-letter Definition 5 are equivalent; in other
words, the notion studied in our work does have an operational interpretation. Crucially,
the operational construction of Definitions A1–A3 also goes clearly along the interpretation
in terms of the successive incorporation of information.

Appendix B.3. Proof of Proposition 2

First of all, note that even though in the Definition 5 of successive refinement, the term
“bottleneck” refers to a solution to the primal problem (1), the definition makes as much
sense if now by “bottleneck” we mean a solution to the Lagrangian problem (3). This is,
therefore, what we will be speaking about in this section. With this Lagrangian version, the
Markov chain characterisation given by Proposition 1 still holds. More precisely:

Proposition A4. Let (X, Y) be jointly Gaussian, and 1 ≤ β1 < · · · < βn. The following are
equivalent:

(i) There is successive refinement for Lagrangian parameters (β1, . . . , βn).
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(ii) There exist Lagrangian bottlenecks T1, . . . , Tn, of common source X and relevancy Y, with re-
spective parameters β1, . . . , βn, and an extension q(Y, X, T1, . . . , Tn) of the qi := qi(Y, X, Ti),
such that, under q, we have the Markov chain

Y− X− Tn − · · · − T1. (A15)

Proof. One can directly verify that the proof given for Proposition 1 (see Appendix B.1)
does not involve the explicit form of the IB problem, so the very same proof can be used for
the Lagrangian formulation.

The statement of Proposition 2 is now fully explicit.

Proof of Proposition 2. For the case of the Lagrangian IB problem with jointly Gaussian
source X and relevancy Y, an analytic solution was given in [75], which proves among other
things that the functions (β 7→ Iβ(X; T)) and (β 7→ Iβ(Y; T)) are continuous and increasing,
where Iβ(X; T) and Iβ(Y; T) are defined by bottlenecks T of Lagrangian trade-off parameter
β. Let us define

β IB(X, Y) := sup {β ∈ R : Iβ(X; T) = 0},

where we must have β IB(X, Y) ≥ 1 (see Section 1.3). Moreover, from the continuity of the
function (β 7→ Iβ(X; T)), this supremum is a maximum, and from the monotonicity of the
latter function, Iβ(X; T) = 0 for all β ≤ β IB(X, Y), whereas, by definition of β IB(X, Y), we
have Iβ(X; T) > 0 for all β > β IB(X, Y). Thus, β IB(X, Y) delimits trivial from non-trivial
solutions, and we can, without loss of generality, choose β ≥ β IB(X, Y).

Let us now turn to the semigroup structure of the Gaussian IB problem, which was both
defined and proved in [33]. In short, this structure means that one can compose two Gaussian
bottlenecks, while still obtaining a Gaussian bottleneck for the original problem. More
precisely, let β2 > β IB(X, Y), and define T2 as the analytical solution to the Lagrangian IB
from [75]. This provides one with a joint distribution q2(Y, X, T2), which, importantly for
us here, happens to define a Gaussian vector as well. Then, we consider a new IB problem
with still the same relevancy variable Y, but now with T2 as the source, i.e.,

arg min
q(T1|T2) : T1−T2−Y,

I(T2; T1) − β′1 I(Y; T1), (A16)

where β′1 ≥ β IB(T2, Y). As T2 and Y are jointly Gaussian, the problem above is again a
Gaussian IB problem, so we can again analytically define a solution T1 with the formulas
from [75], yielding a distribution q1(Y, T2, T1). The semigroup structure proven in [33]
refers to the following feature:

Proposition A5. Assume that T1 and T2 are built as above, and define the extension q(Y, X, T1, T2)
of q1(Y, X, T1) and q2(Y, X, T2) through

q(y, x, t1, t2) := q2(y, x, t2)q1(t1|t2). (A17)

Then, the marginal q(Y, X, T1) defines a Lagrangian bottleneck of source X and relevancy Y
for some parameter β1 uniquely defined, with β IB(X, Y) ≤ β1 < β2.

Thus, we can define a binary operator “◦”, which, for every β2 > β IB(X, Y) ≥ 1 and
β′1 ≥ β IB(T1, Y), provides the parameter β1 := β′2 ◦ β1 defined by Proposition A5. Ref. [33]
gives an explicit formula for this binary operator :

β′1 ◦ β2 =
β′1β2

β′1 + β2 − 1
, (A18)
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which is well-defined for β2 > β IB(X, Y) and β′1 ≥ β IB(T2, Y), because β IB(X, Y) ≥ 1 and
β IB(T2, Y) ≥ 1 ≥ 0 imply that β′1 + β2 − 1 > 0. This formula implies the following:

Proposition A6. Let β2 > β IB(X, Y). For any β1 such that β IB(X, Y) ≤ β1 < β2, there exists
a β′1 such that β1 = β′1 ◦ β2.

Proof. Let f denote the function β′1 7→ β′1 ◦ β2, which is well-defined and continuous on
the interval [β IB(T1, Y),+∞[. It is clear from formula (A18) that

lim
β′1→∞

f (β′1) = β2. (A19)

On the other hand, note first that as β IB(T2, Y) delimits trivial from non-trivial solu-
tions, we have Iβ IB(T2,Y)(T2; T1) = 0. But, by construction, under q given by Equation (A17),
we have the Markov chain Y− X − T2 − T1. Thus, Iβ IB(T2,Y)◦β2

(X; T1) ≤ Iβ IB(T2,Y)(T2, T1),
i.e., Iβ IB(T2,Y)◦β2

(X; T1) = 0. So, by definition of β IB(X, Y), we have

β IB(T2, Y) ◦ β2 ≤ β IB(X, Y), (A20)

i.e.,

f (β IB(T2, Y)) ≤ β IB(X, Y). (A21)

Now, Equations (A19) and (A21), combined with the continuity of f , imply that

[β IB(X, Y), β2[⊆ f
(
[β IB(T2, Y), ∞[

)
,

which yields the result.

Now let us consider a family of parameters β IB(X, Y) ≤ β1 < · · · < βn. By iterating
Propositions A5 and A6 used together, we obtain that there exist bottlenecks T1, . . . , Tn of
common source X and relevancy Y, with respective parameters β1, . . . , βn, and an extension
q(Y, X, T1, . . . , Tn) of these bottlenecks defined by

q(y, x, t1, . . . , tn) := q(y, x, tn)q(tn−1|tn) . . . q(t1|t2).

By construction, under q, the Markov chain Y − X − Tn − · · · − T1 holds. In other
words, condition (ii) from Proposition A4 is satisfied, which proves the successive refin-
ability of jointly Gaussian vectors for the Lagrangian IB problem.

Appendix B.4. Proof of Proposition 3

Here, for α ∈ [0, 1], we denote by Tα the variable defined by

q(Tα = Y|X) = α

q(Tα = e|X) = 1− α,
(A22)

where e denotes a dummy symbol not pertaining to either X or Y . It was proven in [67] that,
for every primal parameter λ ∈ [0, I(X; Y)], there exists an α such that Tα is a bottleneck of
parameter λ. Note that we must have

λ = I(X; Tα) = αI(X; Y), (A23)

where the first equality comes the general fact that a bottleneck must saturate the infor-
mation constraint in (1) (see Section 1.3), and the second equality is a direct computation
from (A22). Thus, α is a bijective and increasing function of λ, and it is sufficient, for



Entropy 2023, 25, 1355 36 of 51

proving successive refinement, to prove that, for 0 ≤ α1 < · · · < αn ≤ 1, we can design a
joint distribution q(X, Tα1 , . . . , Tαn) such that we have the Markov chain

X− Tαn − · · · − Tα1 .

Let us first focus on the case n = 2. We define a bottleneck T2 := Tα2 , i.e, we set
q(X, T2) := q(X, Tα2) and then a distribution q(T1, T2) through

q(T1 = Y|T2 = Y) :=
α1

α2

q(T1 = e|T2 = Y) :=
α2 − α1

α2

q(T1 = Y|T2 = e) := 0

q(T1 = e|T2 = e) := 1.

We then define an extension q(X, T1, T2) of q(X, T2) and q(T1, T2) through

q(x, t1, t2) := q(x, t2)q(t1|t2),

which implies by construction the Markov chain X− T2 − T1. But it also implies that

q(T1 = Y|x) = q(T1 = Y|T2 = Y)q(T2 = Y|x) + q(T1 = Y|T2 = e)q(T2 = e|x)

=
α1

α2
α2 + 0× (1− α2)

= α1,

and thus, necessarily, q(T1 = e|X) = 1− α1. So, q(X, T1) = q(X, Tα1). Thus, we built a
joint law q(X, Tα1 , Tα2) such that X− Tα2 − Tα1 , which proves successive refinement for the
case n = 2. The case of arbitrary n follows by direct iteration of the previous reasoning,
where one starts from defining q(X, Tn) through Tn := Tαn , and then iteratively defines
q(X, Ti, Ti+1, . . . , Tn) through a well-chosen q(Ti|Ti+1) and the Markov chain condition
X− Tn − · · · − Ti+1 − Ti.

Appendix B.5. Proof of Proposition 4

The result is a consequence of the following general fact, where we will eventually set
U := T1, V := T2, and W := X.

Proposition A7. Let q(U, W) and q(V, W) be full-support consistent distributions, defined on
discrete alphabets U ×W and V ×W , respectively. Consider the following properties:

(i) There exists an extension q̃(U, V, W) of q(U, W) and q(V, W) under which the Markov
chain U −V −W holds.

(ii) For each u ∈ U , there exists a family of convex combination coefficients {αv,u , v ∈ V} such
that

q(W|u) = ∑
v

αv,u q(W|v).

Then, we always have (i)⇒ (ii) and, if, moreover, the channel q(W|V) is injective, then we
also have (ii)⇒ (i), and the extension q̃ is uniquely defined.

Note the abuse of notations in the statement of Proposition A7: we write q for both
q(U, V) and q(V, W), which are distinct distributions on partially distinct alphabets, even
though they are consistent; in addition, along the proof, context, if not explicit statements,
will make clear which distribution we are referring to.
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Proof. Along the proof, we will be using the fact that a probability distribution is equivalent
to a family of convex combination coefficients several times; indeed, both notions define a
family of non-negative numbers such that their sum equals one.

(i)⇒ (ii). For all u, w, assumption (i) provides a q̃(U, V, W) such that

q(w|u) = q̃(w|u)
= ∑

v
q̃(w, v|u)

= ∑
v

q̃(v|u) q̃(w|v)

= ∑
v

q̃(v|u) q(w|v),

where the first and fourth equalities use the fact that q̃(U, V, W) is an extension of q(U, W)
and q(V, W), and the third equality uses the fact that, under q̃(U, V, W), the Markov chain
U −V −W holds. Let us define αv,u := q(v|u). For each u ∈ U , the family {αv,u, v ∈ V} is
a probability distribution, and thus a family of convex combination coefficients.

(ii)⇒ (i). We want to design a distribution q̃ that is both consistent with q(U, W) and
q(V, W), and satisfies U −V −W. Thus, such a distribution is wholly defined by q̃(V|U),
because it must satisfy

q̃(u, v, w) = q̃(u)q̃(v|u)q̃(w|v)
= q(u)q̃(v|u)q(w|v),

(A24)

where q(U) is obtained by marginalising q(U, W), whereas q(W|V) is obtained from
q(V, W). Assumption (ii) provides a candidate: let us define q̃(v|u) := αv,u, which makes
sense because, for each u, the family (αv,u)v is made of convex combination coefficients.
From assumption (ii), for all u, w,

q(w|u) = ∑
v

q̃(v|u) q(w|v), (A25)

and the corresponding q̃(U, V, W) defined through Equation (A24) satisfies the Markov
chain U −V −W.

To prove that q̃ is an extension of q(U, W) and q(V, W), let us prove first that q̃ is
consistent with q(U, W). We have

q̃(u, w) = ∑
v

q̃(u, v, w)

= ∑
v

q(u)q̃(v|u)q(w|v)

= q(u)∑
v

q̃(v|u)q(w|v)

= q(u)q(w|u)
= q(u, w),

where the first equality is the definition of the marginal q̃(u, w); the second equality uses
Equation (A24); and the fourth equality uses (A25). Thus, q̃(U, V, W) is consistent with
q(U, W).

Now, let us prove that q̃(V, W) = q(V, W). This is equivalent to the channel q̃(V|U)
sending the marginal q(U) on the marginal q(V):

Lemma A1. We have q̃(V, W) = q(V, W) if and only if

Q̃vuqu = qv, (A26)
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where qu and qv are the column vectors defined by q(U) and q(V), respectively, and Q̃vu is the
column transition matrix defined by q̃(V|U).

Proof. For all v, w,

q̃(v, w) = ∑
u

q̃(u, v, w)

=
(

∑
u

q(u)q̃(v|u)
)

q(w|v),

where the first equality is the definition of the marginal q̃(v, w), and the second one uses
Equation (A24). Thus, for all v, w,

q̃(v, w) = q(v, w) ⇔ q(v, w) =
(

∑
u

q(u)q̃(v|u)
)

q̃(w|v)

⇔ q(v)q(w|v) =
(

∑
u

q(u)q̃(v|u)
)

q(w|v),

and, eventually, for all v, w,

q̃(v, w) = q(v, w) ⇔ q(w|v) = 0 or q(v) = ∑
u

q(u)q̃(v|u). (A27)

Let us momentarily fix v ∈ V . Since q(W|v) is a probability, there must be some
w0 such that q(w0|v) > 0. Choosing that w0, we find that, for the given v, the vector
equality q̃(v, W) = q(v, W) implies, through Equation (A27), that the scalar equality q(v) =
∑u q(u)q̃(v|u). By now applying this reasoning to each v ∈ V , we obtain that q̃(V, W) =
q(V, W) implies that

∀v ∈ V , ∑
u

q(u)q̃(v|u) = q(v), (A28)

whose matrix formulation is precisely (A26). Conversely, if (A28) holds, then Equation (A27)
shows that q̃(V, W) = q(V, W).

We now prove that Equation (A26) indeed holds. Let us also write Qwv and Qwu
for the column transition matrices defined by q(W|V) and q(W|U), respectively. Then,
Equation (A25), which, here, is our assumption, can be rewritten as

Qwu = QwvQ̃vu. (A29)

Thus,

QwvQ̃vuqu = Qwuqu = qw = Qwvqv

where qw is the column vector defined by q(W), and the second and third equalities are the
matrix versions of the decompositions q(W) = ∑u q(u)q(W|u) and q(W) = ∑v q(v)q(W|v),
respectively. In other words,

Qwv(Q̃vuqu − qv) = 0. (A30)

The injectivity of Qwv implies that (A26) indeed holds, so, from Lemma A1, we have
q̃(V, W) = q(V, W). We have thus proven that q̃ extends both q(U, W) and q(V, W), so
point (ii) holds.

Eventually, let us prove the uniqueness. Let q̃′ := q̃′(U, V, W) be another extension
of q(U, W) and q(V, W) such that, under q̃′, the Markov chain U −V −W holds. For the
same reasons as above, q̃′ must satisfy Equation (A24) with q̃ replaced by q̃′, so q̃′ is wholly
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specified by q̃′(V|U), and is enough to prove that q̃′(V|U) = q̃(V|U). Now, using the
assumptions of consistency and the Markov chain for q̃′, we obtain

q(w|u) = q̃′(w|u)
= ∑

v
q̃′(v, w|u)

= ∑
v

q̃′(v|u)q̃′(w|v)

= ∑
v

q̃′(v|u)q(w|v),

(A31)

i.e., in matrix terms, if Q̃′uv is the column transition matrix representing q̃′(V|U),

Qwu = QwvQ̃′vu.

Combining this with Equation (A29), we have Qwv(Q̃′vu − Q̃vu) = 0. In other words, if ci
is the i-th column of Q̃′vu − Q̃vu, then Qwvci = 0 , which, by injectivity of Qwv, means that
ci = 0. Thus, Q̃′vu − Q̃vu = 0, i.e., q̃(U|V) = q̃′(U|V).

This ends the proof of Proposition A7.

Now, first of all, note that if we set U := T1, V := T2 and W := X, then point (ii) in
Proposition A7 is equivalent to the convex hull condition (7).

If there is successive refinement for parameters (λ1, λ2), then, from Proposition 1,
there are bottlenecks T1, T2 of parameters λ1, λ2, respectively, such that X− T2 − T1; and
the direction (i) ⇒ (ii) of Proposition A7 implies that the convex hull condition (7) is
satisfied.

Conversely, assume that the convex hull condition is satisfied for some bottlenecks
T1, T2 of parameters λ1, λ2, respectively, such that q2(X|T2) is injective. Then, the sense
(ii) ⇒ (i) of Proposition A7 shows that there exists a unique extension q̃(X, T1, T2) of
q1(X, T1) and q2(X, T2) such that we have X− T2 − T1. We then conclude with the Markov
chain characterisation of successive refinement (Proposition 1).

Appendix B.6. Linear Program Used to Compute the Convex Hull Condition (7)

Consider, for points u, v1, . . . , vk ∈ Rm, the condition

u ∈ Hull{vi, i = 1, . . . , k}. (A32)

A linear program can be used to check whether this condition holds or not; in short, it
consists of the first step of the simplex method (see, e.g., [68], Section 5.6), which asserts
the existence or not of an initial feasible basis, and computes this basis if it exists. More
precisely, let us first note V the m× k matrix whose columns are the points vi, and define

M :=
(

V
1 . . . 1

)
, ũ :=

(
u
1

)
.

Then, condition (A32) can be reformulated as

∃α := (α1, . . . , αk) ∈ Rk :

{
Mα = ũ,
αi ≥ 0 for i = 1, . . . , k.

(A33)

We now consider the linear program defined for the augmented variable

α̃ := (α1, . . . , αk, αk+1, . . . , αk+m+1) ∈ Rk+m+1
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as

min
M̃α̃=ũ

∀i=1,...,k+m+1, αi≥0

αk+1 + · · ·+ αk+m+1, (A34)

where M̃ := (M|Im+1) is obtained by appending the (m + 1)× (m + 1) identity matrix to
M to the right. It can be directly verified that (A33), and thus, equivalently, (A32), holds if
and only if the minimum is 0 in the linear program (A34), and that if this is the case, then
the first k coordinates α1, . . . , αk of any of the program’s solutions provide coefficients for
obtaining u as a convex combination of the vi.

Now, consider two bottleneck distributions q1 := q1(X, T1) and q2 := q2(X, T2) such
that q(X|T2) is injective. We want to check the convex hull condition (7), which holds if
and only if for every t1 ∈ T1, we have

q(X|t1) ∈ Hull{q(X|t2), t2 ∈ T2}. (A35)

This condition can be checked, for every fixed t1, with the linear program described
above, where if the condition holds, the algorithm also outputs a family of coefficients
(αt2,t1)t2 such that

q(X|t1) = ∑
t2

αt2,t1 q(X|t2). (A36)

Let us define q(t2|t1) := αt2,t1 and a joint distribution q(X, T1, T2) through

q(x, t1, t2) := q1(t1)q(t2|t1)q2(x|t2). (A37)

By construction, under q, we have the Markov chain X − T2 − T1. Moreover thanks
to Equation (A36) and the injectivity of q(X|T2), Proposition A7 shows that q is indeed
an extension of q1(X, T1) and q2(X, T2) . Thus, the linear program above allows one both
to check whether or not the convex hull condition holds and, when it does, to obtain
Theorem 4’s unique extension q(X, T1, T2) such that X− T2 − T1.

Let us turn to considering the algorithm’s complexity. For each t1 ∈ T1, we want to
know if the point q(X|t1), which is made of m = |X | coordinates, is in the convex hull of
k = |T2| points, where we can always choose |T2| ≤ |X |+ 1 (see Section 1.3). One can
directly verify that the linear program (A34) thus consists of at most 2|X |+ 2 variables and
3|X |+ 2 equality and inequality constraints. Moreover, we want to check condition (A35)
for every t1 ∈ T1, where we can always choose |T1| ≤ |X |+ 1. As a consequence, the time
complexity of checking the convex hull condition (7) can be bounded as O((|X |+ 1)K),
where K is the complexity bound of a linear program with 2|X |+ 2 variables and 3|X |+ 2
constraints. By changing the multiplicative constant in the definition of the O(·) notation,
the bound O((|X |+ 1)K) clearly simplifies to O(|X |K). Eventually, Ref. [69] shows that

K = Õ
(
|X |ω log

(
|X |

δ

))
where ω ≈ 2.38 corresponds to the complexity of matrix multiplication and δ is the relative
accuracy. Here the notation Õ(·) hides polylogarithmic factors: i.e., for two functions f and
g defined over positive integers, f (n) = Õ(g(n)) means that there exists some r ∈ N such
that f (n) = O(g(n)logr(g(n))). Overall, the convex hull condition (7) can thus be checked
with an algorithm of time complexity no worse than Õ(|X |ω+1 log( |X |δ )).

Note that as the convex hull condition holds if and only if the linear program’s output
is 0 for all t1 ∈ T1, in numerical computations, the threshold for rounding the program’s
output impacts the answer. In our numerical experiments, we chose the threshold 10−6.
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Appendix B.7. Proof of Proposition 5

We will first present the framework developed in [35,37] and the original content of
this proof, which starts with Lemma A4 below. A full plan of this proof is presented in the
main text.

We already noticed (in Section 2.2) that the primal IB problem (1) can be reformulated
as an optimisation over the pairs (q(T), q(X|T)), i.e., Equation (6). Using the identity
I(U; V) = H(U)− H(U|V), and recalling that a bottleneck T must satisfy I(X; T) = λ [37],
we can further reformulate the problem (6) as

arg min
(q(T), q(X|T))

∑t q(t)q(X|t)=p(X)
H(X|T)=ν

H(Y|T), (A38)

where ν := H(X) − λ. In particular, we can assume, without loss of generality, that
0 ≤ ν ≤ H(X) (see Section 1.3), where ν = H(X) corresponds to I(X; T) = 0. Similarly as
we denoted before by IY(λ) the maximum in the classic IB problem (1), here, we denote
by HY(ν) the minimum in (A38). Rather than considering the information curve, i.e., the
graph of IY, and following [35] upon which we rely, here, we consider the graph of HY,
which we will refer to as the conditional entropy (CE) curve. This curve is convex [35], and
it is just an affine translation of the information curve. Let us now define, for β ≥ 1, the
function

Fβ : ∆X → R

p 7→ H(κp)− β−1H(p),

where κ is the column transition matrix defined by the conditional probability p(Y|X).
Note that, for p = p(X), we have κp = p(Y). (In this section, we choose notations close to
those from [37], as long as they do not clash with the ones we already established; most
notably, what we denote here by β would correspond to β−1 in [37].)

Figure A1. The function Fβ for example values of β and p(X, Y), where the source and relevancy are
binary. Here, on the x-axis, p parameterises the binary distribution [p, 1− p].

The function Fβ is plotted in Figure A1 for example values of β and p(X, Y), where
the source and relevancy are binary. As a difference in concave functions, the function is a
priori neither concave nor convex, but we can define its lower convex envelope, i.e., the largest
convex function, which is still inferior or equal to Fβ everywhere: we will denote it by
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K∪
(

Fβ

)
. In Section IV in [35], through convex duality arguments, the following relationship

between bottlenecks and Fβ was proven:

Proposition A8. If a pair (q(T), q(X|T)) solves the reformulated primal IB problem (A38), then

∑
t

q(t)Fβ(q(X|t)) = K∪
(

Fβ

)
(p(X)), (A39)

for some β ≥ 1 such that β−1 is the slope of a tangent to the CE curve at the point (ν, HY(ν)).

Let us also define the set of points where Fβ differs from its lower convex envelope:

P(β) :=
{

p ∈ ∆X : Fβ(p) 6= K∪
(

Fβ

)
(p)
}

, (A40)

which will happen to be crucial for our considerations on successive refinement. As already
noted (see [37], Section II.B), this set grows when β increases:

Lemma A2. If β1 ≤ β2, then P(β1) ⊆ P(β2).

Proof. For the sake of self-containedness, we reproduce the computation from [37]. Let

p /∈ P(β2), which means that K∪
(

Fβ2

)
(p) = Fβ2(p). For all β1 ≤ β2,

Fβ1(p) = H(κp)− β−1
1 H(p)

= Fβ2(p)− (β−1
1 − β−1

2 )H(p),

so

K∪
(

Fβ1

)
(p) = K∪

(
Fβ2 − (β−1

1 − β−1
2 )H

)
(p)

≥ K∪
(

Fβ2

)
(p) +K∪

(
− (β−1

1 − β−1
2 )H

)
(p)

= K∪
(

Fβ2

)
(p)− (β−1

1 − β−1
2 )H(p),

where the last equality comes from the convexity of the function p 7→ −(β−1
1 − β−1

2 )H(p).
Thus,

K∪
(

Fβ1

)
(p) ≥ K∪

(
Fβ1

)
(p)− (β−1

1 − β−1
2 )H(p)

= Fβ2(p)− (β−1
1 − β−1

2 )H(p)

= Fβ1(p).

But, by definition, we have K∪
(

Fβ1

)
(p) ≤ Fβ1(p), so K∪

(
Fβ1

)
(p) = Fβ1(p); in other

words, p /∈ P(β1). Thus, we have proved that P(β2)
c ⊆ P(β1)

c, which is equivalent to
P(β1) ⊆ P(β2).

Let us now assume that |X | = |Y| = 2. As we already proved successive refinability
for deterministic p(Y|X) in Proposition 3, we can assume that p(Y|X) is not deterministic.
But, the case of |X | = |Y| = 2 and non-deterministic p(Y|X) is exhaustively studied in [35]
(Section IV.A, IV.B and IV.D). The latter work implies that, in this case:

Lemma A3. Let 0 ≤ ν < H(X), let (q(T), q(X|T)) be a a solution to (A38) with parameter ν,
and let β be given by Proposition A8. Then, the set P(β) is a non-empty open interval and, for a
pair (q(T), q(X|T)) to satisfy (A39), the set of points

{q(X|t), t ∈ T }
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must coincide with the extreme points of the interval P(β).

Equipped with these previously established facts, we can leverage them to prove
successive refinement when |X | = |Y| = 2 and p(Y|X) is not deterministic. Note that
the computations from [35] that yield Lemma A3 extract crucial information from the fact
that the sign of F′′β is given here by a quadratic polynomial. These computations are not
straightforwardly generalisable to larger source and relevancy cardinalities—even though
they might serve as inspiration for potential generalisations. Let us start with the following
lemma.

Lemma A4. Let 0 ≤ ν < H(X). Then, we can assume, without loss of generality, that |T | = 2.
Moreover, in this case, a solution (q(T), q(X|T)) to the reformulated IB problem (A38) is such that
q(X|T), seen as a probability transition matrix, is injective.

Proof. Let (q(T), q(X|T)) be a solution to (A38) for parameter ν, and let β be given by
Proposition A8. From Lemma A3, each q(X|t) must correspond to one of the two extreme
points of the interval P(β). Moreover, Proposition A2 ensures that, for any primal bot-
tleneck (or equivalently, any solution to (A38)), we still obtain a bottleneck for the same
parameter if we merge symbols t with identical q(X|t). Thus, we can assume, without loss
of generality, that |T | = 2, and, in this case, the decoder q(X|T) is, up to permutation of
bottleneck symbols, uniquely defined by β.

Moreover, as P(β) is open and non-empty, these extreme points are distinct; in other
words, the column transition matrix Q defined by q(X|T) has its columns made of two
distinct points on the simplex ∆X . These points must thus be linearly independent as
vectors in R2, so the rank of Q is 2. By the null rank theorem and as |T | = 2, this implies
that Q is injective.

Let us now first consider SR for the case of n = 2 processing stages. Let 0 < λ1 <
λ2 ≤ H(X), and let T1, T2 be solutions to the primal IB problem (1) of respective parameters
λ1, λ2. Equivalently, T1 and T2 are solutions to the reformulated IB problem (A38) with
resp. parameters ν1, ν2, where 0 ≤ ν2 < ν1 < H(X). From Lemma A4, we can assume that
q(X|T2) is injective. Moreover, from Proposition A8, the bottleneck pairs (q(T1), q(X|T1))
and (q(T2), q(X|T2)) are solutions to (A39) for parameters β1, β2, respectively, which corre-
spond to inverse slopes of the CE curve at (ν1, HY(ν1)) and (ν2, HY(ν2)), respectively. By
convexity of the CE curve [35], we have β1 ≤ β2. Thus, from Lemma A2,

P(β1) ⊆ P(β2).

This is equivalent to

Hull
(
P(β1)

)
= P(β1) ⊆ P(β2) = Hull

(
P(β2)

)
,

where E denotes the closure of a set E, so, here, P(βi) and P(βi) only differ by taking or
not taking the segment’s extreme points, and the equalities come from the convexity of this
segment. From Lemma A3, this can be rewritten as

Hull
{

q(X|t1), t1 ∈ T1
}
⊆ Hull

{
q(X|t2), t2 ∈ T2

}
.

But this is exactly the convex hull condition (7). As we chose an injective q(X|T2), we
can use the convex hull characterisation (Theorem 4) to conclude that T1 and T2 achieve
successive refinement. Thus, we have proved SR for n = 2 stages.

Appendix B.8. Computation of Bifurcations Values

In this work, we compute the bottlenecks’ bifurcation parameters as the values where
the effective cardinality changes [43]: i.e., a bifurcation is a trade-off parameter value λ for
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which the number of distinct qλ(X|t) changes in a neighborhood of λ (see Section 1.3). With
this naive method, the threshold chosen to numerically equate points q(X|t) impacts the
computed critical values, which could be avoided by using more sophisticated methods for
computing these bifurcation values [42,43,71]. However, the bifurcation values computed
by our naive method did correspond, on our minimal examples, to parameters where the
smoothness of the functions IX(β) := Iβ(X; T) and IY(β) := Iβ(Y; T) breaks. Thus, our
method seemingly identifies discontinuities of the first-order derivative of IX and IY, which
are those of second-order derivatives of the Lagrangian in (3) (see Corollary 1 in [43]). In
this sense, our naive method still identifies the IB bifurcations, if defined as second-order
bifurcations of the IB Lagragian as in, e.g., [42,43].

Appendix C. Section 3 Details

Appendix C.1. Proof of Proposition 6

We recall that ∆q1,q2 is the space of extensions q(X, T1, T2) of q1(X, T1) and q2(X, T2),
and that ∆SR,2 is the space of all distributions r(X, T1, T2) (not necessarily consistent with q1
and q2) under which the Markov chain X− T2 − T1 holds. We write the proof for discrete
variables for ease of presentation, but the very same proof works for continuous variables
if we replace sums by integrals. For q(X, T1, T2) ∈ ∆q1,q2 and r(X, T1, T2) ∈ ∆SR,2,

DKL(q||r) = ∑ q(x, t1, t2) log
(

q(x, t1, t2)

r(x, t1, t2)

)
= ∑ q(x, t1, t2) log

(
q(x, t2)q(t1|x, t2)

r(x, t2)r(t1|t2)

)
= ∑ q(x, t1, t2) log

(
q(t1|x, t2)

r(t1|t2)

)
+ DKL(q(X, T2)||r(X, T2))

≥∑ q(x, t1, t2) log
(

q(t1|x, t2)

r(t1|t2)

)
= ∑ q(x, t1, t2) log

(
q(t1|x, t2)

q(t1|t2)

)
+ ∑ q(t2)DKL(q(T1|t2)||r(T1|t2))

≥∑ q(x, t1, t2) log
(

q(t1|x, t2)

q(t1|t2)

)

(A41)

The last term is DKL(q||r0), with

r0(X, T1, T2) := q(X)q(T2|X)q(T1|T2) ∈ ∆SR,2,

because, under r0, the Markov chain X− T2− T1 holds. So, from the last inequality in (A41),

inf
r∈∆SR,2

DKL(q||r) = DKL(q||r0).

But, the last term of (A41) is also Iq(X; T1|T2). Thus,

DKL(∆q1,q2 ||∆SR) = inf
q∈∆q1,q2

inf
r∈∆SR

DKL(q, r)

= inf
q∈∆q1,q2

DKL(q||r0)

= inf
q∈∆q1,q2

Iq(X; T1|T2)

= UI(X : T1 \ T2).
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Appendix D. The Unicity and Injectivity Conjecture, and Technical Subtleties It
Would Solve

In this section, we describe in more details some technical subtleties encountered in
the main text, and present a conjecture that, if true, would make them fade away in cases
where the information curve is strictly concave. Let us start by stating the conjecture, which
is also interesting in itself. We recall that a bottleneck T is in canonical form when all
the pointwise conditional probabilities q(X|t) are distinct (see Section 1.3), and that every
primal bottleneck can be reduced to canonical form (see Proposition A2).

Conjecture 1. Let p(X, Y) be such that the information curve is strictly concave. Then, the set
of solutions (q(T), q(X|T)) to the primal IB problem (6) that are expressed in canonical form is
such that

(i) The pair (q(T), q(X|T)) is, up to permuting bottleneck symbols, uniquely determined.
(ii) The channel q(X|T), seen as a linear operator on probability distributions, is injective.

Note that point (ii) in the conjecture was always numerically satisfied in our minimal
numerical experiments, where we also always observed a strictly concave information
curve. The strict concavity assumption is necessary for this conjecture to be possibly true,
because it has been shown that for a non-strictly concave information curve, the channel
q(X|T) can be non-injective [39].

The convex hull characterisation of exact SR, i.e., Theorem 4, would, with Conjecture 1,
be made more complete for the strictly concave case. Indeed, one can prove that the
conjecture would imply the following one (Conjecture 2 can be obtained by combining
Theorem 4 and Conjecture 1; as the latter is in any case not a statement for now, we omit
the details):

Conjecture 2. Let X and Y be discrete variables, let λ1 < λ2, and assume that the information
curve is strictly concave. Then, there is successive refinement for parameters (λ1, λ2) if and only if,
equivalently:

(i) There exist bottlenecks T1, T2 of parameters λ1, λ2, respectively, such that the convex hull
condition (7) holds;

(ii) For any bottlenecks T1, T2 of parameters λ1, λ2, respectively, the convex hull condition (7)
holds.

In particular, assuming that the information curve is strictly concave and that Con-
jecture 1 is true, then if the convex hull condition breaks for some bottlenecks T1 and T2
of parameters λ1 and λ2, respectively, this is enough to conclude that there is not SR for
parameters (λ1, λ2). Recalling that, in our numerical experiments, we observed strictly
concave information curves, this would make the exact SR patterns in Figures 4–6 (right),
Figures 10–12 (left), and Figure A3 (middle) exact characterisations of successive refinement.
On the contrary, with Theorem 4 in its current state, in the latter figures, we are indeed
guaranteed that SR holds in the blue areas where the convex hull condition is satisfied, but
we are not formally guaranteed that SR does not hold in the red areas where the convex
hull condition breaks. This is the reason for why, in the main text, we refer to these figures
as mere numerical proxies for successive refinement.

Conjecture 1 being true would also, in the strictly concave case, solve a potential
ambiguity in the definition of soft SR. Indeed, we do not provide, in Section 3.1, any formal
guarantee that the quantity UI(X : T1 \ T2) does not depend on the choice of the bottlenecks
T1 and T2, among all those that solve the IB problems with respective trade-off parameters
λ1 and λ2. To make sure that there is no such dependency, we should rather consider

δ(λ1, λ2) := inf
q(T1|X)∈IB(λ1), q(T2|X)∈IB(λ2)

UI(X : T1 \ T2),

where, here, IB(λ) denotes the set of distributions q(T|X) that solve the IB problem (1) with
trade-off parameter λ. In practice, there currently exists, to the best of our knowledge, no
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algorithm to compute, for a given bottleneck problem, all the solutions in IB(λ). This is the
reason for why, in this paper, we stick to computing UI(X : T1 \ T2) for fixed bottlenecks
T1 and T2. Careful readers should take this number to be, a priori, only an upper bound on
the true measure of soft successive refinement δ(λ1, λ2).

However, one can directly verify that either permuting bottleneck symbols t or merging
those with identical q(X|t)—so as to obtain a canonical bottleneck—leaves the unique
information invariant. Thus, if Conjecture 1-(i) is true, it proves that, for a strictly concave
information curve, UI(X : T1 \ T2) is actually uniquely defined by the trade-off parameters
λ1, λ2, because any pair of corresponding bottlenecks T1 and T2 results in the same unique
information.

Eventually, Conjecture 1 seems interesting in itself. Indeed, it would provide crucial
information on the trajectory of the bottlenecks’ pointwise decoders qλ(X|t) over λ, which
could then help for theoretical advances on the successive refinement of the IB.

Appendix E. Sample p(Y|X) Used in Sections 2.3 and 3.2

Figure A2. Plot of the sample distributions p(Y|X) used in, respectively, from top to bottom:
(i) Figures 4 and 7; (ii) Figures 5 and 8; (iii) Figures 6 and 9. The simplex depicted here is ∆Y , where
|Y| = 3, and each black square corresponds to a symbol-wise conditional probability p(Y|x) ∈ ∆Y .
Note that the corresponding p(X) ∈ ∆X is shown in the left parts of Figures 4–9, which depict the
simplex ∆X , where, here, we also have |X | = 3. The explicit values of the corresponding p(X, Y) can
be found at: https://gitlab.com/uh-adapsys/successive-refinement-ib/.

https://gitlab.com/uh-adapsys/successive-refinement-ib/
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Appendix F. Additional Plots for Exact and Soft Successive Refinement

Figure A3. Additional examples for |X | = |Y| = 3: comparison of bottleneck trajectories (left)
with exact SR patterns (center) and unique information landscapes (right). See Figures 4 and 7 for
more details on the legends. The conditional distributions p(Y|X) corresponding to each row in this
figure are plotted in Figure A4. The explicit values of the corresponding p(X, Y) can be found at:
https://gitlab.com/uh-adapsys/successive-refinement-ib/.

https://gitlab.com/uh-adapsys/successive-refinement-ib/
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Figure A4. Sample distributions p(Y|X) used in Figure A3, where the vertical order here corresponds
to that of Figure A3. The simplex depicted here is ∆Y , where |Y| = 3, and each black square
corresponds to a symbol-wise conditional probability p(Y|x) ∈ ∆Y . Note that the corresponding
p(X) ∈ ∆X is shown in the left parts of each row in Figure A3, which depict the simplex ∆X , where,
here, we also have |X | = 3. The explicit values of the corresponding p(X, Y) can be found at:
https://gitlab.com/uh-adapsys/successive-refinement-ib/.

https://gitlab.com/uh-adapsys/successive-refinement-ib/
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