-

View metadata, citation and similar papers at core.ac.uk brought to you by .{ CORE

provided by PUblication MAnagement

Learning Epistemic Actions in Model-Free
Memory-Free Reinforcement Learning:
Experiments with a Neuro-robotic Model

Dimitri Ognibene!, Nicola Catenacci Volpi?,
Giovanni Pezzulo??, and Gianluca Baldassare?:*

1 Personal Robotics Laboratory, Imperial College London, UK
2 Istituto di Scienze e Tecnologie della Cognizione, CNR, Italy
3 Istituto di Linguistica Computazionale “Antonio Zampolli”, CNR, Italy
4 IMT Institute for Advanced Studies, Lucca, Ttaly

Abstract. Passive sensory processing is often insufficient to guide
biological organisms in complex environments. Rather, behaviourally rel-
evant information can be accessed by performing so-called epistemic
actions that explicitly aim at unveiling hidden information. However,
it is still unclear how an autonomous agent can learn epistemic actions
and how it can use them adaptively. In this work, we propose a defi-
nition of epistemic actions for POMDPs that derive from their charac-
terizations in cognitive science and classical planning literature. We give
theoretical insights about how partial observability and epistemic actions
can affect the learning process and performance in the extreme condi-
tions of model-free and memory-free reinforcement learning where hidden
information cannot be represented. We finally investigate these concepts
using an integrated eye-arm neural architecture for robot control, which
can use its effectors to execute epistemic actions and can exploit the
actively gathered information to efficiently accomplish a seek-and-reach
task.

1 Introduction

When an agent is executing a task in a non-deterministic and partially
observable environment its behavior is affected by its limited knowledge.
Recent evidence in neuroscience @—E] indicates that living organisms can take
into consideration the confidence in their knowledge and execute actions that
allow the decrease of uncertainty if they satisfy a value/cost trade-off. These
actions are named epistemic actions in cognitive science and in the planning
literature, and information-gathering actions in operation research.

In robotics, epistemic actions have been applied in several tasks such as navi-
gation (e.g., moving to positions where sensors can perceive to landmarks @, B]),
active vision (e.g. moving the camera to acquire information given the limited
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field of view, the occlusions, and the changes in the environment [6]), tactile
exploration [, 8], and the active use of bio-inspired sensors such as rat whiskers
[9]. The intrinsic complexity of the real world, however, may require even more
versatile strategies like the execution of actions that change the environment in
order to facilitate perception. Some examples are: opening a box or a drawer
to see its content; rotating a picture to inspect its back; digging the ground to
find root crops or moving the foliage to find fruits. Most of these actions can-
not be predefined in the same way sensor controls are, because they are not
purely epistemic. Indeed, in addition to changing the agent knowledge they also
change the state of the environment and as a consequence they might result to
be maladaptive for the agent.

A typical approach to solve the lack of information is using memory of previous
perceptions. However, in some situations acting without appropriate knowledge
is not useful (e.g., trying to open a safe with a limited number of attempts) so the
first actions to execute should be directed to gather information (e.g., asking the
opening number). Acting ignoring ignorance is seldom a good strategy. However,
it is also not easy to devise at design time which actions an agent should execute
to decrease uncertainty or which hidden structure of the environment it will
encounter.

2 Epistemic Actions and POMDP Approximations

In the classical Al planning literature the problem of limited knowledge has
been faced by adding knowledge preconditions to classical action definitions and
through the definition of epistemic actions [10]. Knowledge preconditions define
“what” information must be acquired, and the epistemic actions define “how”. A
common characteristic is that epistemic actions change only the agent knowledge
of the world, and, differently from pragmatic or ontic actions, they do not change
the world state [10, [11]. However, as we discussed earlier some actions affect both
the perception (and knowledge) of the agent and the state of the environment.
Given this ambiguity, a common choice is to model an action as a combination
of an ontic action and an epistemic action [11].

In cognitive science epistemic actions are actions executed by a bounded agent
as ways to overcome its intrinsic limits |12, [13]. When the limits being tackled
are of perceptual nature we can use the expression external epistemic actions
because they can be easily defined, once known the perceptual apparatus of the
agent and the structure of the environment, without using information of the
internal structure of the agent.

POMDPs [j] formalise the problem of optimising sequential decisions in
partially observable stochastic environments. Agents have a complete probabilis-
tic model of the environment, composed by a set of states S (and the related
transition probabilities 7(s'T1, ay, s')), and a set of observations (and again the
related transition probabilities). At each step an agent executes an action a and
receives an observation o and a reward r, finally it updates a probabilistic distri-
bution of the state s, named belief state b(s), (for which transition probabilities
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T(bty1,at, b)) can be computed). An optimal behaviour is associated with an
optimal value function V(b)* = E[> o, 7' R¢|B = b]. When the full state is
observable the optimal behaviour and related value function can simply use the
state V(s)* = E[>_ 2, 7' R¢|So = s].

Classical POMDP theory does not make any explicit difference between epis-
temic and ontic actions. We propose a definition of external epistemic actions
for the POMDP framework that takes inspiration from its definition in cognitive
science and the classical planning literature. A starting point for the definition
are the two main characteristics that Herzig and colleagues [11] associate to
epistemic actions: informativeness and non-intrusiveness.

An action is informative when its execution reduces the uncertainty of the
belief state b(s). Formal definitions can be found in [5, [14]. More recent
approaches, using non myopic value of information, can be found in |4, [15]. We de-
fine an action e to be non-intrusive in the belief state b if the expected value of the
belief state reached after executing e, E[Q(b,e)] = >, 7(b,e,b") > b'(s)V*(s),
is equal to the value of the current belief state b computed using the Q-MDP
approximation V*(b) = >__b(s)V*(s) and if the immediate expected reward of
executing the action is 0. (D>, [b(s)r(s,e)| = OfI. The use of V*(s) in place of
V*(b) is intuitively explainable by the fact that the latter comprises the modi-
fication to the internal state of the agent, thus any epistemic action will affect
it. This formalises the concept that the execution of a non-intrusive action does
not change the reward that the agent can receive.

We define an action e to be strictly external epistemic in the belief state b if
it is informative and non-intrusive in the belief state b. An action e is strictly
epistemic over observation o if the action is epistemic for every belief state b for
which P(olb) # 0. A POMDP is an MDP-reducible-POMDP when it admits a
policy 7. that for any belief state reduces state entropy to zero in a finite number
of steps using only epistemic actions. A MDP-reducible-POMDP can be solved
combining the policy 7, with the optimal policy myspp. The obtained solution
can be sub-optimal because of the time spent executing m.. This condition can
be found in real-world tasks. For example, in some active vision problems [16]
the algorithms used are based on a phase in which only the point of view is
changed till the agent has enough confidence on the observed state |[17]. This is
a subclass of the MDP-reducible-POMDPs because only camera control actions
are executed for information retrieval and the state of the task is unchanged.

3 Epistemic Actions and Reinforcement Learning

In the hypothesis that an agent is working in POMDPs and is endowed with
epistemic actions, or even in the more strict condition of a MDP-reducible-
POMDP, the problem remains of acquiring a complete stochastic model of the
environment before solving it, which can still be complex. A different approach
is using a reinforcement learning (RL) based agent which directly learns the

! Note that this is different from the optimal transition which states that V*(s) =
maxa(r(s, a‘) + Zs’ T(Slv a, S)V* (sl))
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Fig.1. (a,b) Examples of POMDPs with ambiguity and optimal memory-free policy
not learnable through RL. Circles that fall in the same grey shape will give the same
ambiguous observation, while circles inside the same rectangle are observations of the
same state. The other circles are unambiguous states. (¢,d) A POMDP and its under-
lying MDP problem. Its peculiarity is the presence of as that always brings the agent
to the goal from the aliased states Aj_4.

action policy by interacting with the environment. Studying how RL, especially
model-free and memory-free RL [18, [19], performs when epistemic actions are
available in POMDP is interesting for two main reasons:

1. Reinforcement learning has been shown to be able to learn in MDP, however
it has also shown to have strong limitations when facing POMDPs [17].

2. Learning a model can allow the execution of epistemic actions related to the
hidden states that are correctly represented, but it is a complex problem by
itself and cannot help for not represented states.

3. Many greedy POMDP algorithms have been shown to fail in POMDP be-
cause they “ignore ignorance” even if they use a complete belief state, so
how a model-free [ reinforcement learning agent can take into consideration
its own ignorance and select epistemic actions is an open issue.

Moreover, while it has been shown that in some conditions memory-free agents
can effectively behave in partially observable environments [20], limited work
has been done to allow the autonomous development of such behaviours with
similar constraints (but see |18, [21]).

3.1 Learning in POMDP with and without Epistemic Actions

A typical POMDP, originally reported in [22], is shown in Figure[lla. The states A;
and A, are ambiguous because they result in the same observation O.

2 Note that a model-free, memory-free agent is also belief-free and unaware of its
uncertainty. To define epistemic actions for such an agent, an external probabilistic
observer has to be used, which receives as input the agent actions and observations.
The changes in the uncertainty in the belief state of the observer after each action-
observation pair is used to measure the action informativeness.
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The optimal policy would be to select the action a1 in every state. The use of
a value iteration algorithm with the assumption that observations are states will
result in the agent oscillating around state A:B. Online learning using the explo-
ration approach proposed in [23] obtains the same results without ever learning a
path toward the goal. See [24] for more examples of the effect of perceptual aliasing
on RL. A similar situation can arise in the POMDP shown in Figure[lc,d.

Does the addition of epistemic actions allow a model-free memory-free RL
agent to learn in these environments? Looking the environment of Figure [Ilb,
where epistemic actions and the related observations O; and O, are added, we
can see that the agent will still move from state S3 toward state A;. So in this
case adding epistemic actions does not solve the problem.

Epistemic actions affect learning by increasing the distance between the start-
ing state and the goal, and by increasing the fan out of the resulting graph in
comparison to the underlying MDP (each observation is connected to all the
states that make it visible). The value of executing an epistemic action depends
on the value of all the possible states reached, in other words on the estimated
value of the information acquired. This results in an increase of the exploration
time during learning. To see this, consider an environment like the one in Figure
[Mc,d, and an agent that is endowed with epistemic action e and m 4 ontic ac-
tions available in all states which, if executed in the right MDP state, result in
the reward R (in the figure a1,a2 and as3). Similarly to the previous situation,
the agent will not be able to distinguish between observations and states, so the
observation A in the POMDP is seen as a single state and is shared by the MDP
states Ay,A42,A3,A4. Note that action agz if executed several times can take the
agent to the solution from every state. During the first trials of learning the epis-
temic action e will have very low probability of being executed. Consequently
the (unambiguous) states, e.g. S1, will not be evaluated correctly. In the unam-
biguous state the agent will have also very little probability of learning the right
action to do because of the a high number (n4) of ontic actions. Thus, after
the first trials the epistemic actions will not probably increase their values. At
the same time several ontic actions in the ambiguous state A will be executed,
and so there will be a high chance that one of them leads to a reward. This
will result in increasing the probability of reselecting the same action while the
probability of selecting an epistemic actions will decrease. Moreover, if there is
an action like ag available in the ambiguous state which cycles through hidden
states and also brings the agent to the goal, it will be easily found and its value
will not decrease due to punishments. Even if the policy resulting from as is
sub-optimal it requires the exploration of small set of states and will slow down
the exploration of other actions.

Given this kind of dynamics, before an epistemic action can acquire a high
value the agent should learn how to behave in most of the non-ambiguos states

3 We consider O as a state with transition probabilities resulting from a different mix-
ture of those of state A; and of state As. The value function obtained in observation
O has higher value than in state S4, so in state S3 the agent will choose action a2 and
not action a.



196 D. Ognibene et al.

S;. It is interesting to note that using a greedy method for POMDPs which
ignores uncertainty reduction [5], the action chosen will be one of the ontic
actions. With enough learning experience a RL agent might be able to learn a
policy comprising epistemic actions because the learnt value of action-state pairs
can be comprehensive of the information value.

4 Experimental Results

We used a neuro-robotic system of arm-eye coordination to study experimentally
the concepts presented in the previous sections. The architecture of the model
(Figure Pla) integrates two components: (a) an attention control component
formed by a bottom-up and a top-down attention sub-component; (b) an arm
control component. Only an overview of these components is presented here. For
a complete description of the system refer to [25]@.

The setup used to test the model is a simulated version of a real system
presented in [24] (see Figure 2la), formed by a down-looking camera and a
2-DOFs robotic arm. The arm horizontal working plane is formed by a horizon-
tal computer screen where the task stimuli appear. The camera image activates
a periphery map that implements bottom-up attention. The central part of the
image (fovea) feeds a reinforcement-learning actor-critic [19] component (imple-
mented by two feed-forward neural networks) that learns to predict the positions
of relevant visual elements based on the currently foveated cues (top-down at-
tention). A saliency map sums up the information from the periphery map with
the output of the actor network and selects the next eye movement correspond-
ing to the most active neurons (through neural competition). Each eye fixation
point, encoded in a eye posture map, suggests a potential arm target to an arm
posture map which (a) performs the “eye posture — arm posture” inverse kine-
matic and (b) implements a second neural competition which triggers reaching
movements when the eye fixates the same location for about three consecutive
time steps. If the reached target is the correct one (red object), the actor-critic
component is rewarded. By closely coupling reaching to gaze control, the pro-
posed model embodies the “attention-for-action” principle [26]. This principle
states that in organisms attention has the function of extracting the information
necessary to control action. This principle might be incorporated in the system
as a hard-wired link between an epistemic (visual) action and an ontic (reaching)
action. The following experiments will test if the model is able to learn to execute
epistemic actions which do not have such a pre-wired link in the architecture.

* For this work three minor change where made to the architecture: (a) the foveal input
was pre-processed in order to separate the different objects on different input units both
for the actor and the critic neural networks: this informs the agent on the identity of ob-
jects; (b) the action of reaching is not directly punished to satisfy the non-intrusiveness
constraint, but for every saccade the agent gets a punishment of -0.0025; (c) Finally
PAM, an action-based memory system, was removed to have a model/memory /belief-
free agent, so the agent could not rely on the inhibition of return mechanism and on
previous estimation of target position, some key properties of PAM.
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The rationale of this is that the informative role of an action should depend on
the task and the environment. In the experiments, reaching actions can change
the environment and uncover useful information to accomplish the task.

4.1 Experimental Setup

We used a task inspired from a card game for children. Two different families of
4x4 grid environments were used to train the agent: (a) in the first family the
target is randomly positioned and all the other edges of the grid are occupied
by cues, each of which has a precise spatial relationship with the target which is
constant for all the environments in the family (see figure 2d,e); (b) the second
family is like the previous one but the cues are randomly hidden by grey cover
(with each cue having 0.1 chance to be free since the beginning, see figure 2lb,c).
In both families the target is never covered. When the agent touches a cover
with the arm, the underlying cue is revealed. In both families of environments
the agent can obtain reward only by touching the target. This will also start a
new trial.

To use the nomenclature developed in section [2] is necessary to transform the
second family of environments to a POMDP with one state for any possible
configuration of the covers and for each position of the gaze and of the target.
In this POMDP every state where the agent is not gazing to the target will have
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the same value in the underlying MDP because it is always possible to reach
the goal state with the same number of eye and arm actions. So any gazing
action from a state where cues or covers are gazed to a non targeted position
is non-intrusive. Touching a cue or a cover is always non-intrusive because the
target is uncovered from the beginning, thus in no condition removing a cover
is necessary to obtain reward. Regarding informativeness, removing a cover is
always informative since it gives access to a state that is unambiguous for the
agent. Consequently, reaching a cue is an epistemic action in this context.

Three runs of 100,000 steps were executed in the two different environments.
For each policy learnt with the clean map another run was executed with the
corresponding environment with random covers. The data obtained in three runs
for each condition were quite similar so only one run for condition is analysed
in the following section.

4.2 Results

Figure Bla shows the evolution of the average number of saccades per trial in
the map task with agents fulfilling three different conditions: (a) learning with
all the cues uncovered; (b) learning with most of the cues covered; (c) adapting
from condition a to condition b. The final average number of saccades per trial
for condition a is 3.2, for condition b is 8.0, and for condition ¢ is 5.2. Thus,
the agent in ¢, re-trained after having discovered the value of the cues, faces a
simpler task then than the agent in b and so develops a better performance in
the environment with the covered cues .

Figure Blb shows the evolution of the average number of reaching actions
on covers per trial (thus only conditions b and ¢). The final average number
of reaching actions on covers for condition b is 0.3 and for condition c¢ is 1.2.
The agent in ¢ uncovers a cue or more in most trials. It thus learns to execute
strictly epistemic actions. Considering that a reaching action requires about 2-3
saccades to the same spot to be triggered, the exploration policy of the agent in ¢
compared to that of the agent in b is more efficient than what might be supposed
on the basis of the simple ratio between the number of saccades. While the agent
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in b and c is architecturally identical and operates in the same environment, it
acquires very different behaviours due to the different training history.
Figures[da,b,c show the evolution of the value of the objects in the three con-
ditions. The cues are represented by the evolution of the average value because
the epistemic reaching action value depends on the average value of the cue that
can be uncovered. The comparison of the three graphs shows that in condition
a the values of the cues are learnt faster than in condition b. This means that
initially in condition b the agent cannot learn to uncover the cues because it
still does not know how to use the information it gets access to. Instead, looking
away from the covers (which prevents reaching and uncovering them) can be
useful because it can randomly lead to the target. On the other hand, when the
agent knows the use of the cues, uncovering them is easily learnt if the agent
has not inhibited this behaviour, as shown by Figure[@c. This is a quite general
main result of this research: for a model-free agent, the possibility of learning
to use epistemic actions is strongly dependent on knowing how to use the infor-
mation they deliver. Otherwise the epistemic actions can be inhibited and not
explored/exploited anymore even when the agent later acquires the capacity to
use the information they deliver. Probably, this might be ameliorated by using a
mechanisms like internal simulation (like DYNA [27]). Even if in the condition b
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reported above the agent seemed to have converged to a stable performance level,
a longer run (500,000 steps) with 10% of cues uncovered (same as condition b)
was executed to test if it was able to learn to execute the epistemic actions with
additional learning. The results are shown in figure Bl The final average number
of saccades per trial is 5.1, similar to that of the agent in ¢. The final number
of reaching actions on covers is 0.7, which means that in most of the trial the
agent executes an epistemic action. However the agent takes about 50,000 trials
to learn this behavior while the agent pre-trained on the clean map (c) develops
the behavior in less than 2,000 trials (to which we must add the trials spent in
the pre-training, that are about 12,000).

An experiment with an even longer training was executed with all the
cues covered. In this condition even after 750,000 steps the agent was not able
to develop the epistemic reaching action. In this condition a simple scanning
procedure is really easy to learn for the agent, e.g., moving the gaze to the ad-
jacent left element each time a cover is foveated. Instead, discovering the real
underlying structure of the environment results in a complex policy involving a
different action for each possible cue. This policy is particularly difficult to learn
also because initially all the cues are covered, so moving from an uncovered cue
to another position usually brings the agent to another cover.

5 Conclusions

Cognitive science research describes epistemic actions as aiming to change the
internal state of the agent to (i) acquire new information from the environment,
(ii) facilitate information processing, and (iii) acquire knowledge for better future
processing and execution. The distinctive characteristic of epistemic actions is
that they are executed by a bounded agent as a means to overcome its intrinsic
perceptual, computational, and expertise limits [12, [13].

The work presented in this paper is focused on epistemic actions used to
acquire information, named external epistemic actions. In psychology these ac-
tions have been named specific exploration actions [28]. The epistemic actions
used to facilitate information processing can instead be named internal epis-
temic actions. A typical example from literature is rotating Tetris game blocks
to facilitate visual matching instead of internally simulating their rotation |12].
Another is the use of sensorimotor strategies for discrimination instead of com-
plex internal processing, e.g. scale and rotation invariance [20]. The third and
last kind of epistemic actions are named curiosity epistemic actions: these are
executed by the agent to increase its knowledge of the environment [28; [29].

We provided a formal definition of external epistemic actions for the POMDP
framework, together with the concept of MPD-reducible-POMDP. This defini-
tion is dependent only on agent perceptual system and environment structure,
so it can be applied without knowing the internal structure of the agent. Then
we discussed several theoretical issues affecting a simple model-free agent using
reinforcement learning in POMDP with epistemic actions, showing that even
having MDP-reducible-POMDP is not a sufficient condition to permit learning
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of the optimal policy. We also showed the issues coming from (a) the initial
ignorance of the use of the information that is accessed through an epistemic
action and (b) the presence of suboptimal policies which are more information-
ally parsimonious and easy to learn. These policies tend to visit a limited set of
perceptual states and show that the agent representation of the task, ignoring
some of the hidden states, does not match with the actual environment. This is
an important issue to consider when modelling organisms’ behaviour using rein-
forcement learning. In this regards, it would be interesting to further study the
preference for informationally parsimonious policies using a principled formal
approach based on information theory like the one proposed in [30].

These issues were finally illustrated through a robotic experiment. Using dif-
ferent training procedures we showed the importance of knowing how to use
the information acquired through an epistemic actions to learn the latter ones.
Using an higher degree of partial observability resulted in the use of suboptimal
strategies. In this respect, the results showed that it is possible to facilitate the
acquisition of epistemic actions using shaping techniques [31]. The experiments
also showed that the architecture proposed here is able to merge learnt epistemic
actions with ontic actions in a smooth way in several conditions. On the con-
trary, most robotic architectures have a separate information acquisition phase
followed by an action execution phase, thus limiting their adaptation capabilities.

Previous studies |20, 132] showed that reactive agents whose structure is
developed with evolutionary algorithms can produce efficient behaviours even
in partially observable environments. The results presented here extend these
findings by showing that reactive agents can, in some conditions, learn through
direct interaction with the environment how to incorporate epistemic actions in
their policies, and this gives substantial advantages when adapting to complex
environments with partial observability and a structure unknown at design time.

Another interesting further study can be to consider principles like “free-
energy” minimization |33, 34]. When applied to the reduction of the uncertainty
on the quantities related to the agent structure, e.g. the perceptual state of the
agent, these might also result in the reduction of uncertainty on the environment
hidden variables, similarly to epistemic actions.
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