5,925 research outputs found

    Thermal field theory derivation of the source term induced by a fast parton from the quark energy-momentum tensor

    Full text link
    I derive the distribution of energy and momentum transmitted from a fast parton to a medium of thermalized quarks, or the source term, in perturbative thermal field theory directly from the quark energy-momentum tensor. The fast parton is coupled to the medium by adding an interaction term to the Lagrangian. The thermal expectation value of the energy-momentum tensor source term is then evaluated using standard Feynman rules at finite temperature. It is found that local excitations, which are important for exciting an observable Mach cone structure, fall sharply as a function of the energy of the fast parton. This may have implications for the trigger pTp_T dependence of measurements of azimuthal dihadron particle correlations in heavy-ion collisions. In particular, a conical emission pattern would be less likely to be observed for increasing trigger pTp_T. I show that the results presented in this paper can be generalized to more realistic modeling of fast parton propagation, such as through a time dependent interaction term, in future studies.Comment: Version as accepted by Physical Review D. New version has several clarifications and added references. 5 pages, 3 figure

    Kraken at Home

    Get PDF
    Kraken at Home by k. marie neufel

    Exploring Causal Influences

    Get PDF
    Recent data mining techniques exploit patterns of statistical independence in multivariate data to make conjectures about cause/effect relationships. These relationships can be used to construct causal graphs, which are sometimes represented by weighted node-link diagrams, with nodes representing variables and combinations of weighted links and/or nodes showing the strength of causal relationships. We present an interactive visualization for causal graphs (ICGs), inspired in part by the Influence Explorer. The key principles of this visualization are as follows: Variables are represented with vertical bars attached to nodes in a graph. Direct manipulation of variables is achieved by sliding a variable value up and down, which reveals causality by producing instantaneous change in causally and/or probabilistically linked variables. This direct manipulation technique gives users the impression they are causally influencing the variables linked to the one they are manipulating. In this context, we demonstrate the subtle distinction between seeing and setting of variable values, and in an extended example, show how this visualization can help a user understand the relationships in a large variable set, and with some intuitions about the domain and a few basic concepts, quickly detect bugs in causal models constructed from these data mining techniques

    Fundamental Vibrational Transitions of HCl Detected in CRL 2136

    Full text link
    We would like to understand the chemistry of dense clouds and their hot cores more quantitatively by obtaining more complete knowledge of the chemical species present in them. We have obtained high-resolution infrared absorption spectroscopy at 3-4 um toward the bright infrared source CRL 2136. The fundamental vibration-rotation band of HCl has been detected within a dense cloud for the first time. The HCl is probably located in the warm compact circumstellar envelope or disk of CRL 2136. The fractional abundance of HCl is (4.9-8.7)e-8, indicating that approximately 20 % of the elemental chlorine is in gaseous HCl. The kinetic temperature of the absorbing gas is 250 K, half the value determined from infrared spectroscopy of 13CO and water. The percentage of chlorine in HCl is approximately that expected for gas at this temperature. The reason for the difference in temperatures between the various molecular species is unknown.Comment: 6 pages, 3 figures, A&A in pres

    High-resolution absorption spectroscopy of the OH 2Pi 3/2 ground state line

    Full text link
    The chemical composition of the interstellar medium is determined by gas phase chemistry, assisted by grain surface reactions, and by shock chemistry. The aim of this study is to measure the abundance of the hydroxyl radical (OH) in diffuse spiral arm clouds as a contribution to our understanding of the underlying network of chemical reactions. Owing to their high critical density, the ground states of light hydrides provide a tool to directly estimate column densities by means of absorption spectroscopy against bright background sources. We observed onboard the SOFIA observatory the 2Pi3/2, J = 5/2 3/2 2.5 THz line of ground-state OH in the diffuse clouds of the Carina-Sagittarius spiral arm. OH column densities in the spiral arm clouds along the sightlines to W49N, W51 and G34.26+0.15 were found to be of the order of 10^14 cm^-2, which corresponds to a fractional abundance of 10^-7 to 10^-8, which is comparable to that of H_2O. The absorption spectra of both species have similar velocity components, and the ratio of the derived H_2O to OH column densities ranges from 0.3 to 1.0. In W49N we also detected the corresponding line of ^18OH

    Dispersive entrainment into gravity currents in porous media

    Get PDF
    he effects of dispersion acting on gravity currents propagating through porous media are considered theoretically and experimentally. We exploit the large aspect ratio of these currents to formulate a depth-averaged model of the evolution of the mass and buoyancy. Dispersion, acting predominantly at the interface between the current and the ambient, is velocity dependent and acts to entrain fluid into the gravity current, in direct analogy to turbulent mixing. Here, we show that when the gravity current is fed by a constant buoyancy and mass flux the buoyancy of the current is self-similar and recovers the classical solution for gravity currents in porous media. In contrast, the profile and the depth-averaged concentration of the current evolve in a non-self-similar manner. The total volume of the current increases with time as due to this dispersive entrainment. We test our theoretical predictions using a suite of laboratory experiments in which the evolution of the concentration within the current was mapped using a dye-attenuation technique. These experimental results show good agreement with the early-time limits of our theoretical model, and in particular accurately predict the evolution of the depth-averaged concentration profile. These results suggest that mixing within porous media may be modelled using an effective dispersive entrainment, the magnitude of which may be set by the underlying structure of the porous medium

    Intermittency in two-dimensional Ekman-Navier-Stokes turbulence

    Get PDF
    We study the statistics of the vorticity field in two-dimensional Navier-Stokes turbulence with a linear Ekman friction. We show that the small-scale vorticity fluctuations are intermittent, as conjectured by Nam et al. [Phys. Rev. Lett. vol.84 (2000) 5134]. The small-scale statistics of vorticity fluctuations coincides with the one of a passive scalar with finite lifetime transported by the velocity field itself.Comment: 4 pages, 7 figure

    SWAS and Arecibo observations of H2O and OH in a diffuse cloud along the line-of-sight to W51

    Get PDF
    Observations of W51 with the Submillimeter Wave Astronomy Satellite (SWAS) have yielded the first detection of water vapor in a diffuse molecular cloud. The water vapor lies in a foreground cloud that gives rise to an absorption feature at an LSR velocity of 6 km/s. The inferred H2O column density is 2.5E+13 cm-2. Observations with the Arecibo radio telescope of hydroxyl molecules at ten positions in W51 imply an OH column density of 8E+13 cm-2 in the same diffuse cloud. The observed H2O/OH ratio of ~ 0.3 is significantly larger than an upper limit derived previously from ultraviolet observations of the similar diffuse molecular cloud lying in front of HD 154368. The observed variation in H2O/OH likely points to the presence in one or both of these clouds of a warm (T > 400) gas component in which neutral-neutral reactions are important sources of OH and/or H2O.Comment: 15 pages (AASTeX) including 4 (eps) figures. To appear in the Astrophysical Journa

    Comparing different freeze-out scenarios in azimuthal hadron correlations induced by fast partons

    Full text link
    I review the linearized hydrodynamical treatment of a fast parton traversing a perturbative quark-gluon plasma. Using numerical solutions for the medium's response to the fast parton, I obtain the medium's distribution function which is then used in a Cooper-Frye freeze-out prescription to obtain an azimuthal particle spectrum. Two different freeze-out scenarios are considered which yield significantly different results. I conclude that any meaningful comparison of azimuthal hadron correlation functions to RHIC data requires implementing a realistic freeze-out scenario in an expanding medium.Comment: Contribution to the Proceedings for 2008 Hot Quarks in Estes Park, CO, as accepted for publication in EPJ-
    • …
    corecore