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The effects of dispersion acting on gravity currents propagating through porous media
are considered theoretically and experimentally. We exploit the large aspect ratio of
these currents to formulate a depth-averaged model of the evolution of the mass and
buoyancy. Dispersion, acting predominantly at the interface between the current and the
ambient, is velocity dependent and acts to entrain fluid into the gravity current, in direct
analogy to turbulent mixing. Here we show that when the gravity current is fed by a
constant buoyancy and mass flux the buoyancy of the current is self-similar and recovers
the classical solution for gravity currents in porous media. In contrast, the profile and
the depth-averaged concentration of the current evolve in a non self-similar manner. The
total volume of the current increases with time as t1/3 due to this dispersive entrainment.
We test our theoretical predictions using a suite of laboratory experiments in which the
evolution of the concentration within the current was mapped using a dye-attenuation
technique. These experimental results show good agreement with the early-time limits
of our theoretical model, and in particular accurately predict the evolution of the depth-
averaged concentration profile. These results suggest that mixing within porous media
may be modelled using an effective dispersive entrainment, the magnitude of which may
be set by the underlying structure of the porous medium.
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1. Introduction

Gravity currents are primarily horizontal flows driven by gravity acting on the density
difference between fluids. In porous media, gravity currents describe the behaviour
of flows relevant to geological carbon sequestration, geothermal energy, groundwater
flows and the motion of contaminants in the subsurface, for example. The behaviour
of gravity currents in porous media has been studied extensively, both experimentally
and theoretically. The majority of these studies consider long, thin currents, propagating
through homogeneous porous media with no mixing between the fluids. However, due to
the complexity of flow within realistic geological media, the distribution of fluids may
become dispersed by heterogeneities at a range of scales and hence the behaviour of
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these buoyancy-driven flows may differ significantly from idealised models. It is therefore
important to incorporate the mixing between fluids driven by the complexity of the pore
space and natural heterogeneities within the rocks in models of gravity currents in porous
media.

Unconfined gravity currents in porous media have been studied theoretically and
experimentally by Huppert & Woods (1995) for rectilinear geometries and by Lyle et al.
(2005) for the axisymmetric case. These models are based on the assumption that (i) the
gravity currents are long and thin so that the vertical velocity can be neglected, (ii) the
background flow is negligible when the ambient is much deeper than the current, and
(iii) that there is no mixing between the injected and ambient fluids, commonly refered
to as the sharp-interface assumption. In both geometries the gravity currents exhibit
a self-similar behaviour as described previously by Pattle (1959). The propagation of
gravity currents in porous media has been studied further with additional geometrical
complications. For example, gravity currents on an inclined surface have been studied
by Vella & Huppert (2006) and Gunn & Woods (2011), or in a vertically confined
medium by Nordbotten et al. (58), MacMinn et al. (2012), Pegler et al. (2014) and
Zheng et al. (2015). Moreover, by relaxing the restriction of a homogeneous medium,
Pritchard et al. (2001), Goda & Sato (2011) and Sahu & Flynn (2017) have investigated
gravity currents in layered porous media of differing permeabilities, while Zheng et al.
(2014) have investigated flow in horizontally heterogeneous medium. Formulations for
modelling gravity currents in a highly heterogeneous medium have been presented by
Anderson et al. (2003, 2004), who describe homogenization methods for the averaging of
medium properties. Apart from considering various geometries, the effects of non uniform
fluid properties in porous gravity currents have also been investigated. Some examples
include: two-layer or stratified gravity currents by Woods & Mason (2000) and Pegler
et al. (2016), respectively; vaporizing gravity currents by Woods & Mason (1998); and
non-Newtonian gravity currents in porous media by Ciriello et al. (2016) and Lauriola
et al. (2018).

For miscible fluids in porous medium, mass transfer of solute occurs either by molecular
diffusion if the system is static, or by hydrodynamic dispersion if there is flow (Delgado
2007; Woods 2015). However, the effects of mixing between the gravity current and
ambient fluid remain largely unexplored despite the extensive literature on porous media
gravity currents outlined above. Some examples, where mass transfer across the interface
during a density-driven flow have been explored, include convective dissolution which
occurs during geological carbon sequestration (Neufeld et al. 2010; MacMinn et al. 2012;
Guo et al. 2016) and the intrusion of sea water into coastal aquifers (Huyakorn et al.
1987; Dentz et al. 2006; Pastar & Dagan 2007). Solute transport obeys a Fickian model of
dispersion when the medium is homogeneous. However, given the heterogeneous nature
of aquifers, mixing of solute with the ambient generally occurs in a non-Fickian regime. A
significant amount of work has been done on modelling solute transport in heterogeneous,
three dimensional media using stochastic methods, which have proved to be a helpful tool
in capturing the anomalies in solute transport in more realistic field problems (Carrera
1993; Fleurant & van der Lee 2001; Verwoerd 2007; Fiori et al. 2015).

An investigation of mixing in miscible gravity currents that more directly addresses
mixing between fluids is the work of Szulczewski & Juanes (2013). In that study the
authors considered mixing due to molecular diffusion between dense and light fluids
within a confined porous layer. They investigated the case of a constant volume release
and found the time-dependent evolution of the interface and concentration. They identify
five regimes: early diffusion, S-slumping, straight-line slumping, Taylor-slumping, and
late diffusion. They find that diffusion is predominant in the early and late-time regimes,
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whereas in the S-slumping and straight-line slumping regimes the interface remains sharp.
However, in the Taylor-slumping regime, they show that the mixing is enhanced through
Taylor dispersion. Their study, however, did not consider the effects of enhanced mixing
through dispersion driven by the flow. It may be anticipated that at early and late times,
where the velocity is small, mixing is diffusive, but that at intermediate times mixing is
enhanced through dispersion. Furthermore, it may be anticipated that the mixing in the
unconfined limit may differ substantially from that found in confined aquifers.

The prevalence of dispersion in miscible gravity currents is apparent in previous work,
for example in flows through homogeneous porous media by Sahu & Flynn (2015)
and Pegler et al. (2017) – see their figures 6 and 12, respectively, and the associated
discussions. In multilayered porous media this mixing may be greatly enhanced as
observed in the laboratory experiments of Huppert et al. (2013, figure 7) and Sahu &
Flynn (2015, figure 4). In those studies the volume of the current became larger than that
anticipated by the fluid injected alone. In practice, most geological aquifers are highly
heterogeneous (Alpay 1972) and the fluids are not entirely immiscible (Enick & Klara
1990), so it may be anticipated that the effects of mixing during flow may be significant.

In this paper we present a model of mixing in porous media gravity currents, con-
sidering mechanical dispersion as the primary source of entrainment. We consider the
case of a continuous, constant volume flux injection and begin by presenting a general
mathematical model for dispersive entrainment in gravity currents in porous media in
§ 2. In § 3 we demonstrate the character of the flow and mixing through mathematical
analysis. In § 4 we present laboratory exteriments and explain how we determine the
concentration and hence mixing rates from laboratory images. In § 4.3 we present a
comparison between the mathematical model and our experimental results. In § 5 we
compare the findings from the current model with the previous models and also describe
how the current entrainment model may be applied more broadly to heterogeneous porous
media. Finally, in § 6 we conclude by summarizing the current work and identifying future
problems of interest.

2. Mathematical model of flow and dispersive entrainment

2.1. Governing equations

We consider the injection of a fluid of initial concentration C0, and hence density ρ0,
at fixed volume flux q into a large, horizontal porous medium of uniform porosity φ and
permeability k that is initially saturated with an ambient fluid of concentration Ca = 0
and density ρa. In general, flow through the porous medium is described by a statement
of mass conservation, Darcy’s law, a statement of conservation of solute as expressed by
an advection-diffusion relationship, and an equation of state describing the dependence
of the density on concentration;

∇ · u = 0, (2.1)

u = −k
µ

(∇p+ ρgẑ) , (2.2)

∂C

∂t
+ u · ∇C = ∇ · [D(u)∇C] (2.3)

ρ(x, t) = ρa [1 + β(C(x, t)− Ca)] . (2.4)

Here µ is the dynamic viscosity, p is pressure, x = (x, z) represents the horizontal
and vertical coordinates, u = (u,w) is the velocity vector and D(u) is, in general, the
dispersion coefficient of concentration and β is the coefficient of solute contraction.
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Figure 1: Schematic of a gravity current in a porous medium indicating how dispersion
may be incorporated through an effective entrainment. The red curve depicts a typical
vertical concentration profile throughout the current.

This general model for buoyancy-driven flow presents a challenge for numerical simu-
lations over very large lateral lengthscales. Our aim is therefore to construct a reduced
model of the average properties within the current using parameterizations, where
appropriate, of the vertical structure. We focus on cases where the depth of the medium is
large, and hence the flow of the ambient fluid may be neglected (the so-called unconfined
limit). Further, we consider cases where the lateral extent of the current is much greater
than the vertical extent. In this limit, scaling analysis of (2.1)–(2.3) suggests that for
long, thin currents |w| � |u| and the pressure is hydrostatic

p(x, z, t) = pH + ρag(H − z) + ρagβ

∫ h

z

[C(x, z, t)− Ca] dz, (0 6 z 6 h) . (2.5)

Here w and u are the vertical and horizontal velocities of the current and h(x, t) is
the gravity current height, which is identified as the interface between the current and
ambient where C(x, z = h, t) ≈ Ca, and pH is the pressure at a reference height z =
H � h. Since the pressure is hydrostatic the horizontal velocity of the current is

u = −k
µ

∂p

∂x
= −kρagβ

µ

[
∂

∂x

∫ h

0

(C − Ca)dz

]
' −kρagβ

µ

∂[h(C − Ca)]

∂x
, (2.6)

where the depth-averaged concentration

C(x, t) = Ca +
1

h

∫ h

0

[C(x, z, t)− Ca]dz . (2.7)

Here we make an ansatz that the concentration within the current is uniform with depth,
and only varies over a mixing region of width δ at z = h. This assumption may be
generalized to a self-symmetric concentration profile throughout the length of the current
– see for example Johnson & Hogg (2013). In effect, we neglect vertical variations in the
concentration throughout the current, except at the edge as depicted in figure 1, and
model only the evolution of the bulk concentration.

Considering that mass transfer due to concentration gradient occurs at the gravity
current edge through dispersion, the flux of concentration through z = h must be zero
so that a kinematic condition describing the surface of the current may be written as

φ C|h
∂h

∂t
+ (uC)|h

∂h

∂x
= (wC)|h − D

∂C

∂z

∣∣∣∣
h

. (2.8)
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It is worth emphasising that, as defined by the concentration contour C(h, t), growth
of the current may be driven by both advection and diffusive or dispersive mixing. The
evolution of the bulk concentration is therefore constrained by a depth integral of (2.3)
along with the kinematic condition (2.8) and the velocity model (2.6),

φ
∂(hC)

∂t
− kρagβ

µ

∂

∂x

[
hC

∂(hC)

∂x

]
= 0. (2.9)

This equation expresses conservation of solute, or buoyancy, within the current. Depth
integration of a statement of conservation of mass, (2.1), along with the kinematic
condition

φ
∂h

∂t
+ u

∂h

∂x
= w +

D

C − Ca
∂C

∂z

∣∣∣∣
h

, (2.10)

provides a second equation that expresses conservation of mass within the current

φ
∂h

∂t
− kρagβ

µ

∂

∂x

(
h
∂(hC)

∂x

)
=

D

C − Ca
∂C

∂z

∣∣∣∣
h

= we . (2.11)

Here mixing across the concentration boundary layer at the edge of the current is mod-
elled by an effective diffusive or dispersive entrainment we. For dispersive processes, we
therefore approximate the effective entrainment of ambient fluid over a small lengthscale
δ to be

we '
Dm + α̃u

δ
' αu (2.12)

for processes in which Péclet number,

Pe = α̃u/Dm � 1 , (2.13)

such that dispersion dominates (Delgado 2007; Woods 2015). Here Dm is the molecular
diffusivity, α = α̃/δ ∼ O(1) is the effective entrainment coefficient and α̃ and δ are
representative of the pore scale. This dimensionless transverse dispersivity plays a role
that is qualitatively similar to the entrainment coefficient in turbulent plumes and gravity
currents (Morton et al. 1956; Johnson & Hogg 2013). Here, for simplicity, we assume that
the nondimensional transverse dispersivity α ≈ constant, and constrain the value of this
entrainment constant through experimental measurements in section 4.3. It is important
to note that we neglect the longitudinal, or horizontal, entrainment in our model and
leave its inclusion for a future study.

Equations (2.9) and (2.11) express the local conservation of buoyancy and mass
respectively. At the origin, x = 0, mass and concentration are injected at rates

q = [uh]x=0 , and q(C0 − Ca) =
[
u(C − Ca)h

]
x=0

, (2.14a, b)

respectively, where q is the volume flux into the current and C0 the initial concentration.
Note that (2.14a,b) can be used to show that the concentration at the origin is fixed at
the input concentration,

C(0, t) = C0. (2.15)

Globally, concentration, or equivalently buoyancy, is conserved within the current

qt(C0 − Ca) = φ

∫ xN

0

(C − Ca)hdx, (2.16)

where xN (t) is the extent of the gravity current. Equation (2.16) together with (2.14)
and (2.9) imply that there is no buoyancy flux through the nose of the current,[

u(C − Ca)h
]
xN

= 0, (2.17)
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which we identify as the location where

C(xN , t) = Ca. (2.18)

2.2. Non-dimensional governing equations

The presence of entrainment implies that (2.9) and (2.11) along with boundary condi-
tions (2.14)–(2.18) may be made non-dimensional, with dimensionless variables defined
as

Ĉ =
C − Ca
C0 − Ca

, (2.19a)

ĥ =
αkgβ(C0 − Ca)

qν
h, (2.19b)

x̂ =
α2kgβ(C0 − Ca)

qν
x, (2.19c)

t̂ =
α3

φq

[
kgβ(C0 − Ca)

ν

]2
t, (2.19d)

Here, concentration is made non-dimentional with the concentration difference between
the input and ambient fluids (C0 − Ca). Length and time scales are made fully non-
dimensional with the length, height and time scales over which dispersive entrainment
becomes comparable with the buoyancy velocity. On implementing these forms, the
governing equations, (2.9) and (2.11), therefore become

∂(ĥĈ)

∂t̂
− ∂

∂x̂

[
ĥĈ

∂(ĥĈ)

∂x̂

]
= 0, (2.20)

∂ĥ

∂t̂
− ∂

∂x̂

[
ĥ
∂(ĥĈ)

∂x̂

]
= û = −∂(ĥĈ)

∂x̂
, (2.21)

respectively, where we have used the characteristic local gravity current velocity û =
−ĥ∂(ĥĈ)/∂x̂ to express the local dispersive entrainment. These governing equations are
solved subject to the boundary conditions

−ĥĈ ∂(ĥĈ)

∂x̂
= 1, (x̂ = 0), (2.22a)

Ĉ = 1, (x̂ = 0), (2.22b)

−ĥĈ ∂(ĥĈ)

∂x̂
= 0, (x̂ = x̂N ), (2.22c)

Ĉ = 0, (x̂ = x̂N ), (2.22d)

where x̂N (t̂) is the dimensionless length of the gravity current. Alternatively, we may
substitute one of (2.22a,b) with ∫ x̂N

0

ĥĈ dx̂ = t̂, (2.23)

which expresses global conservation of solute (or buoyancy).
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Figure 2: Numerical solutions of (2.20) and (2.21) using a finite difference scheme for: (a)

Dimensionless buoyancy, b̂ = ĥĈ, vs. dimensionless length, x̂, at various dimensionless
times, t̂, corresponding to (2.19), and (b) ĥ and b̂ at x̂ = 0 and the nose location, x̂N , as
functions of t̂.

3. Fixed mass and buoyancy flux with dispersive entrainment

We begin by considering the case, outlined in section 2.2, in which a constant mass
and buoyancy flux is injected into a porous medium to form a long-thin gravity current.
Dispersion between the injected and ambient fluids acts to mix the fluids across the
interface, thus effectively entraining mass into the spreading current. The incorporation
of mixing, through dispersive entrainment, introduces a new length scale in the physical
problem, so that the self-similar spreading found by previous authors (Huppert & Woods
1995; Lyle et al. 2005) is not an obvious outcome. We therefore first look for direct
numerical solutions to equations (2.20)–(2.22).

3.1. Dimensionless numerical solutions

To investigate the mathematical consequences of the model of dispersive entrainment,
we solve (2.20) and (2.21) subject to (2.22a–d) numerically. We use a flux-conservative,
Crank-Nicholson finite difference scheme to solve (2.20) with an upwinding scheme
implemented to solve (2.21). Boundary conditions (2.22a–d) are implemented at x̂ = L̂ >
x̂N (t̂), but we find that the solutions naturally have compact support, as described in
the following sections, and hence boundary conditions (2.22a–d) are satisfied implicitly
at x̂ = x̂N (t̂) in our numerical solutions. Solutions are found on a fixed grid of size
x̂ = [0, L̂], with spatially uniform discretisation. In all cases we simulate the propagation
of the current until x̂N ' 0.9L̂.

The numerical results obtained from this dimensionless analysis are shown in figure 2.
In figure 2a the product of height and concentration, which is the buoyancy

b̂ = ĥĈ, (3.1)

is plotted as a function of x̂/x̂N for times t̂ = [10−2, 10−1, 1, 101, 102]. The results

demonstrate that b̂ exhibits a self-similar profile for all times, a point we return to
in section 3.2. Figure 2b shows the length scale of the current, x̂N (t), and the height,

or equivalently buoyancy, at the origin, ĥ0 or b̂0, as a function of time. We find that
x̂N ∼ t̂2/3 and ĥ0 = b̂0 ∼ t̂1/3, values in keeping with the self-similar description of
a gravity current in a porous medium without mixing, as described in the analysis of
Huppert & Woods (1995).
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Figure 3: Numerical solution of (3.5) showing the self-similar buoyancy, or solute mass,
of the gravity current. We find that f0 = f(η = 0) = 1.296 and ηN = 1.482. The red
dashed curve shows the numerical result of figure 2a normalized using f0 and ηN .

3.2. Modified similarity solution

Motivated by the numerical solutions presented in section 3.1 we first look for self-
similar solutions describing the evolution of the buoyancy within the current, returning
to their implications for the height and concentration profiles throughout. We first note
that (2.20) may be written in terms of the buoyancy, b̂ = ĥĈ, as

∂b̂

∂t̂
− ∂

∂x̂

(
b̂
∂b̂

∂x̂

)
= 0, (3.2)

subject to

− b̂
∂b̂

∂x̂

∣∣∣∣∣
x̂=0

= 1, b̂(x̂N ) = 0,

∫ x̂N

0

b̂dx̂ = t̂, (3.3a, b, c)

where we have used (2.22a) and (2.23) to write (3.3a) and (3.3c) respectively, and likewise

used the assumption that ĥ(x̂N ) is finite to re-write (2.22d) as (3.3b). It is readily
apparent that (3.2) and (3.3a-c) satisfy the formulation for a sharp-interface gravity
current in a porous medium (Huppert & Woods 1995), and hence we recover the classical
result that the buoyancy is self similar. In detail we find that

b̂ = t̂1/3f(η), where η =
x̂

t̂2/3
∈ [0, ηN ] (3.4a, b)

and f(η) satisfies

1

3
f − 2

3
η

df

dη
=

d

dη

(
f

df

dη

)
, (3.5)

subject to

− f
df

dη

∣∣∣∣
0

= 1, f(ηN ) = 0 and

∫ ηN

0

f dη = 1. (3.6a, b, c)

Equation (3.5) is solved using a shooting method (using the Matlab routine ode45) and
the result is shown in figure 3, where f(0) = 1.296 and ηN = 1.482.

This result anticipates the conclusion that in the absence of entrainment, where Ĉ = 1
everywhere and hence ĥ = b̂, the classical, self-similar model of a gravity current in
a porous medium is recovered. Furthermore this result suggests that at all times we
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may expect this self-similar behaviour for buoyancy, which drives the propagation of the
dispersively entraining gravity current.

In contrast, dispersive entrainment dilutes the concentration within the current and
adds to its apparent mass, and hence we may anticipate that the height and concentration
profiles will not evolve in a self-similar manner. However, noting that Ĉ(x̂ = 0) = 1 and

hence ĥ(0, t̂) = b̂(0, t̂) ∼ t̂1/3, we write

ĥ = t̂1/3g(η, t̂), (3.7)

so that (2.21) may be re-written as

∂g

∂t̂
=

1

t̂

[
−g

3
+

2η

3

∂g

∂η
+
∂g

∂η

df

dη
+ g

d2f

dη2

]
− 1

t̂2/3
df

dη
, (3.8)

which is subject to

g(0, t̂) = f0 and g(η, 0) = f(η) . (3.9a, b)

Given the profile of the buoyancy, f(η), which can be independently determined as shown
previously, we see that the profile of the current, as described by g(η, t̂), is governed by
a purely hyperbolic (i.e. advective) equation driven by entrainment. We therefore use an
upwinding discretization for ∂g/∂η from η = 0, where (3.9a) is applied, to η = ηN with
the same number of grid points in between as used for f in (3.5). Since f(η) is determined
independently, the values of f ′ and f ′′ at each η used in the numerical solution for g(η)
are obtained from the solution presented in figure 3. Given the t̂ term in the denominator
of (3.8), we assume that the initial condition (3.9b) is valid at an early time t̂ = 10−4

and use a time step of 10−8 to solve for ∂g/∂t̂ explicitly, marching forward in t̂. Results
for g and Ĉ are shown in figure 4 for various values of t̂, where the concentration Ĉ is
obtained from

Ĉ(η, t̂) =
f(η)

g(η, t̂)
. (3.10)

The shock solution obtained at the nose in figure 4a is due to the purely advective
(or hyperbolic) nature of (3.8). Furthermore, the appearance of the shock is a natural
consequence of neglecting horizontal dispersion in our mathematical model. Entrainment
through dispersion acts to thicken the current, ultimately leading to a large, blunt nose
(see figure 4a) and an almost linear profile of the average concentration (see figure 4b).
It is observed in figure 4a that at late times the height profile has a positive slope, which
signifies that the volume accumulated through vertical entrainment becomes greater
than the volume advected horizontally. However, the combination of the height and
concentration profiles, in the form of the buoyancy (see equation 2.6), still drives the net
flow from the origin to the nose of the current, and therefore the positive slope of the
height profile does not result into a backflow.

Due to the continuous entrainment from the ambient, the total volume of the current
Vc increases at a rate in excess of the injected volume, qt. The total dimensionless volume
of the gravity current, V̂c = φVc/(qt), can therefore be written as

V̂c =
φ

qt

∫ t

0

(
q

φ
+

∫ xN

0

we dx

)
dt = 1 +

3

4
φf0t̂

1/3 , (3.11)

where f0 = 1.296 as presented in figure 3. The last term appears by combining (2.6),
(2.12) and (3.4) with the similarity solution presented in figure 3. Equation (3.11) shows
that the rate of entrainment is self-similar and hence the total volume of the gravity
current can be predicted analytically as a function of dimensionless time t̂. In dimensional
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Figure 4: Numerical results obtained using an upwinding finite difference scheme for
dimensionless height and concentration from (3.8) and (3.10), respectively. The dashed
curve in panel (a) shows the sharp interface solution derived by Huppert & Woods (1995)
which also represents t̂ = 0 for the dispersive model. The solution obtained from the
current, dispersive model is shown for t̂ = [10−4, 10−3, 10−2, 10−1, 1] both for g and Ĉ,
with arrows indicating increasing t̂.

form, (3.11) reads

Vc =
qt

φ
+

3αf0
4φ1/3

[
qkgβ(C0 − Ca)

ν

]2/3
t4/3 . (3.12)

This shows that when the entrainment coefficient α = 0, Vc = qt/φ, which reproduces the
limiting case of the sharp-interface model. Furthermore, considering the additional vol-
ume that has entrained, a mean solute concentration Cc, or reduced gravity, normalized
by C0 − Ca, at any t̂ can be derived by buoyancy conservation as

Ĉc =
Cc − Ca
C0 − Ca

=

∫ xN

0

C − Ca
C0 − Ca

dx =
4

4 + 3φf0t̂1/3
. (3.13)

Thus, we find that the mean concentration of the contaminated region described by (3.13)
is self-similar, which can be written in dimensional form as

Cc = Ca +
4(C0 − Ca)(φqν2)1/3

4(φqν2)1/3 + 3φf0α[kgβ(C0 − Ca)]2/3t1/3
. (3.14)

4. Experimental investigation

A series of laboratory experiments were performed in which the spatial and temporal
distributions of concentration were measured so as to assess the impact of dispersive
mixing on the structure and dynamics of a gravity current within a porous medium.
These measurements were made possible by carefully calibrating the concentration of dye,
and hence colour intensity, within the experimental images. From these measurements
we obtained the structure of the concentration field and were therefore able to assess the
importance of dispersive mixing in the resulting gravity current.

4.1. Experimental setup and calibration curve

The experiments were conducted in a transparent rectangular tank of size 200×20×1
cm3. The tank was filled with dp = 3.1 ± 0.2 mm diameter ballotini and tap water of
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Figure 5: Schematic of the experimental setup.

density ρa = 0.998 g/cm3. The porosity of the tank was measured and found to be
φ = 0.41± 0.01, which is slightly higher than the value for randomly close-packed beads
(φ = 0.37) since the width of the tank is comparable with the diameter of the beads and
therefore inhibits the packing. The permeability was estimated using the Kozeny–Carman
relation

k =
d2p
180

φ3

(1− φ)2
' 1.17± 0.30× 10−4 cm2 , (4.1)

which compares favorably to the values k = 1.11 ± 0.17 × 10−4 cm2 based on the rate
of propagation of the gravity currents described below. Salt water of fixed salt and dye
concentration was injected at the bottom-left corner of the tank at a constant rate during
the experiments using a peristaltic pump. The water level in the tank was kept constant
throughout the experiments by an overflow port at the top of the tank opposite the input
port, as shown in the schematic of the experimental setup in figure 5.

We used a Nikon D5300 DSLR camera, with a resolution of 6000 × 4000 pixels, to
capture images of the experiments, with images recorded directly to a computer every
60 seconds. To ensure uniform illumination, the experimental tank was backlit by a LED
light panel with the same dimensions as the tank.

Calibration experiments were performed to determine the functional relationship be-
tween the dye concentration and image intensity. For these experiments, the tank was
uniformly saturated with a red dye of concentration Cd. A total of 10 concentration
values were used to construct the calibration curve,

Cd = [0, 0.02, 0.05, 0.10, 0.20, 0.40, 0.60, 0.80, 1.00, 1.20]± 0.01 g/L , (4.2)

with concentration spacing set to optimize camera sensitivity and fully resolve the
calibration curve. The camera settings used were aperture f/10, shutter speed 1/2500 s
and only the green channel of the image was used for processing. In detail, the calibration
curve, shown in figure 6, was constructed by subtracting each image with nonzero dye
concentration from a reference image in which Cd = 0. To account for small variations
in light intensity across the tank, we divided each calibration image into a series of
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Figure 6: Calibration curve: dye concentration vs. image intensity, with Cd ± 0.01 g/L.

Expt. q (cm2/s) ρ0 (g/cm3) g′0 (cm/s2) std (err)

1 0.169 1.021 20.60 ±1.3%
2 0.242 1.021 20.60 ±1.3%
3 0.363 1.021 20.60 ±1.4%
4 0.363 1.021 20.60 ±1.6%
5 0.242 1.046 45.12 ±2.7%
6 0.363 1.046 45.12 ±1.6%
7 0.363 1.046 45.12 ±0.8%
8 0.484 1.046 45.12 ±1.8%
9 0.242 1.072 70.63 ±2.5%
10 0.363 1.072 70.63 ±2.5%

Table 1: A summary of the experimental parameters: source volume flux q, source density
ρ0, and source reduced gravity g′0, where g′0 = g(ρ0 − ρa)/ρa ≡ gβ(C0 − Ca). Typical
measurement uncertainty of these quantities is q ± 0.001 cm2/s, ρ0 ± 0.005 g/cm3 and
g′0 ± 0.52 cm/s2, respectively. Also presented in the table are the standard deviations
of the errors err, calculated using (4.4), involved with the postprocessing scheme in
measuring the concentration and volume within the currents from the start to end of
each experiment.

1.0 (horizontal)× 0.3 (vertical) cm2 subregions, each containing roughly 120− 150 pixels.
We found that the concentration could be recovered from the image intensity in each
subregion using a polynomial of the form

Cd = A(I0 − I) +B(I0 − I)2 g/L , (4.3)

where I and I0 are the image intensities of the calibration image and reference image,
respectively, in each subregion and A and B are their polynomial fitting coefficients.
Characteristic values of A and B across each subregion are A = 5.44± 1.58× 10−3 g/L
and B = 6.73± 1.15× 10−5 g/L.
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Figure 7: (a) Gravity current images, (b) their concentration maps and (c) vertical
concentration profiles. Dashed curves represent the height profiles obtained using
interface detection algorithm. Each individual panels are 200 cm long and 20 cm tall,
whereas the colormap scale represent (C −Ca)/(C0 −Ca). In the bottom panel the red,
green and magenta curves represent the vertical concentration variation at three different
locations indicated in the concentration map at t = 20 min.

4.2. Gravity current experiments and concentration maps

A suite of gravity current experiments were conducted in which the fixed source volume
flux q and fluid density ρ0, or equivalently concentration C0, were varied. In total, we
report on 10 experiments, for which the details are listed in table 1, where experiments 4
and 7 are repeats of experiments 3 and 6 respectively. The images from these experiments
were processed in a manner consistent with the calibration experiments: they were first
cropped and subtracted from a reference image taken of the tank saturated with tap water
just before starting each experiment. The image intensity of these processed images was
then converted into a concentration, Cd(x, z, t) using the calibration curve (4.3) in each
0.3 cm2 subregion. An example of the processed experimental images is shown in figure 7
where the raw gravity current images and the processed concentration maps are shown
from a representative experiment (experiment 7) at four time points.

To measure the height profiles of the gravity currents we use an interface detection
method on the image intensity or concentration which does not rely on the calibration
data. After subtracting the gravity current images from a reference image the resultant
image is divided into vertical columns of 1 cm thickness across the tank. For each column
the vertical gradient of the intensity, indirectly the concentration gradient, is calculated.
From these intensity or concentration gradients, the location of the maximum absolute
gradient is taken as the interface between the gravity current and ambient fluid. Height
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Figure 8: Loglog plot of total entrained volume in gravity currents vs. time. The straight
lines represent theoretical predictions from (3.12) with the best fit α = 0.013± 0.005.

profiles obtained through this interface detection method are shown using dashed curves
in figure 7, both in the raw images and on the concentration maps.

Furthermore, we note that the concentration maps in figure 7 are uniform to leading
order, but contain a concentration profile that varies systematically across the current.
We divided the concentration maps into vertical columns of equal thickness and the
mean vertical concentration for each column was calculated. Also presented in figure
7 are the vertical variation of concentration at three different location, shown in red,
green and magenta. The clear difference in concentration between these three curves
at z → 0, signifies the horizontal variation, whereas their individual vertical variations
corresponds to the assumption we made in section 2.1, i.e. shown figure 1, that maximum
concentration gradient occurs at the edge and remains nearly constant beneath that.

As a check on the accuracy of the dye-concentration calibration scheme, we calculate
the normalized difference between the concentration injected, and that imaged in the
entire tank at any time t. The percentage error, defined in this way, is therefore given by

err =

[
qt(C0 − Ca)

φ
− VcCc

]
100φ

qt(C0 − Ca)
, (4.4)

where Vc and Cc are the total volume and mean concentration of the contaminated region
measured using the dye-attenuation image processing routine at time t for an experiment
of volume flux q and source concentration C0. The percentage error, err, are estimated
for each experiment at 10 different times from the start to end of the experiment. The
values are found to be random and do not show any particular trend in time. Standard
deviations of these errors are presented in table 1 and are encouragingly within ±2.5%
for each case.

4.3. Comparison with dispersive entrainment theory

The raw gravity current images and concentration maps in figure 7 verify the occur-
rence of entrainment in gravity currents in porous media. To quantitavely analyse the
effects of entrainment and compare the results of our experiments with our theoretical
predictions we first estimate the value of the entrainment coefficient α. We consider the
total entrained volume (Vc−qt/φ) as the basis for a global estimate of α, whose theoretical
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Figure 9: Comparison of theory vs. experiment for h and C: (a) Experiment 1, (b)
Experiment 6 and (c) Experiment 8. Results are presented for three different times with
t1 = [12, 6, 5] min for experiments 1, 6 and 8, respectively. Indicative error bars for the
height profiles are shown at the top left corners in each panel for time t1, t2 and t3.
These error bars represent the mean difference between the height measured and the
height predicted using α = 0.013 for each time.

predictions are obtained from (3.12) and experimental values from the concentration
maps in figure 7. A best fit analysis of the quantity Vc−qt/φ is performed and compared
to the theoretical predictions for each experiment which suggests α = 0.013±0.005 and is
shown in figure 8. The vertical and horizontal axes represent the left and right (without
α) terms in (3.12), respectively, and the straight lines are the theoretical predictions. The
data are consistent with the simple, linear entrainment law used, particularly at later
times, with discrepancies between theory and experiment at early times likely amplified
by the relaxation of the source flow to a long, thin gravity current.
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Figure 10: Comparison of theory vs. experiment for the buoyancy flux. Black curve
represent the prediction shown in figure 3 and the discrete data are from experiments 1,
6 and 8 at three different times.

The height profiles of the experimental gravity currents are presented in figure 9 for
three different experiments at three different times, where the time span is different for
each experiment. The experimental results are compared with the predictions of our
dispersive model for α = 0.008, 0.013 and 0.018, consistent with figure 8, and the height
profiles predicted by the sharp-interface model, i.e. α = 0 (Huppert & Woods 1995).
At early times (t1 in each panel) the dispersive and sharp-interface predictions almost
coincide, whereas at later times the difference between them increases gradually as the
accumulated mixing increases. This behaviour is confirmed by our experiments, as the
discrete experimental data show a good agreement with the dispersive height profiles and
tend to evolve a blunted nose at the front due to entrainment. Encouragingly, most of
the experimental data fall between the height profiles predicted for α = 0.013± 0.005.

In the concentration plots of figure 9 (right side panels) we find that the spatio-temporal
variation of mean concentration is in agreement with the theoretical predictions, which
we have plotted for three different values of α similar to that for the height profiles –
Note that, according to our theoretical model, the length of the gravity current, xN ,
is unaffected by the entrainment and therefore the predictions for different α in figure
9 converge at the nose. The experimental data highlight the effect of mixing, with a
decreasing concentration towards the front of the current as predicted by the dispersive
entrainment model. In comparison, the mean concentration predicted by the sharp-
interface model is C(x, t) = 1. While these concentration plots show a clear demonstration
of mixing in experiments, we observe that at late times the data around the nose are
quite dispersed and they deviate significantly from the predictions. This may be either
because the gravity current closer to the nose is much thinner, which makes it more prone
to the errors linked with the post-processing scheme we use for making the concentration
maps or because the horizontal entrainment is significant at the nose which we do not
consider in our theoretical model.

In figure 10 we show the buoyancy (b = hC) profiles for the experiments presented
in figure 9 by combining the left and right panels at the respective times. All the data
are normalized using the buoyancy at x = 0, b0, and length xN such that they collapse
onto a universal profile, thus demostrating the self-similarity of the buoyancy flux. The
self-similar profile (solid curve) obtained from figure 3 show a good agreement with the
discrete experimental data.
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Figure 11: Loglog plots showing: (a) Gravity current length, (b) Height at the source.
The straight lines represent the predictions from (3.4) and (3.7), respectively, and the
experimental data are shown for all 10 experiments.

Finally, we compare the length (xN ) and height at the source (h0) of the gravity

currents for all 10 experiments from table 1 as shown in figure 11. Here x̂N , ĥ0 and t̂
are the non-dimensional quantities defined in (2.19) and the straight lines represent the
predictions from (3.4) and (3.7), respectively, with η = ηN = 1.482 and g = f0 = 1.296.
Agreement between the theory and experiments is promising, with minor deviation in
panel (b) for h0. This deviation may be attributed to the fact that the ambient fluid
motion is neglected in our theoretical analysis, whereas in the experiments h0 is of the
order of ambient fluid depth.

5. Discussion

The mixing of fluids in porous media is a long-standing problem with a large number
of important geophysical and industrial applications. To date, many approaches to mod-
elling mixing, or dispersion, within porous media have focused on augmented advection-
diffusion models. Here, motivated by highly successful models of turbulent plumes and
gravity currents we have instead sought to constrain only the bulk properties of the
gravity current, the mass and the concentration or buoyancy. While such conservation
arguments neglect the variance inherent in the flows, they are a powerful tool for
understanding the large scale dynamics.

Through a set of careful laboratory experiments we have tested the predicted conse-
quences of such a dispersive entrainment model, and find good agreement when analysing
the structure of the depth-averaged concentration in particular (see figure 9).

We see a clear indication of entrainment in the laboratory experiments through the
increasing volume with time (see figure 8). However, we see only a minor difference
between our dispersive model and the sharp-interface model predictions, particularly for
height profiles (figure 9), though we note that the laboratory experiments generally fall
in a range where dimensionless time t̂ < 10−3. At these early times the total entrainment
is small, increasing the volume of the current by only about 4% (see 3.11). When the
gravity currents are allowed to develop for longer, e.g. in real geological flows where t̂
can become much larger, the discrepancy between the sharp-interface model and actual
flow may increase with time and in these cases dispersive mixing would become more
significant. We also anticipate that as time progresses and dispersive entrainment leads
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to the formation of a shock front at the nose, longitudinal dispersion may become more
significant, an effect we here neglected in this study.

The importance or magnitude of the dispersive entrainment depends crucially on the
small-scale structure of the porous medium. Here, for mathematical and experimental
simplicity, we have focused on pore-scale dispersion for which the effective entrainment
coefficient is necessarily small. However, for many natural systems the effective dispersion
may be much larger, particularly when considering heterogeneities at the 10 cm scale
acting on currents which are 1-10 m thick. In such cases the effective entrainment would
necessarily reflect the underlying structure of the medium, appropriately averaged.

In many heterogeneous media the dispersivity becomes dependent on the scale of the
flow because of resultant flow instabilities and local nonuniform velocities (Wheatcraft
& Tyler, 1988; Gelhar et al. 1992). An example of enhanced entrainment can be seen in
the two-layered experiments of Huppert et al. (2013, figure 7) and Sahu & Flynn (2017,
figure 4). In these cases the entrainment is enhanced because of a layered permeability
structure which results in Rayleigh-Taylor instabilities which actively promote mixing.

The experimental images of Huppert et al. (2013) and Sahu & Flynn (2017) also show
that the gravity current is significantly thicker at the nose even at the laboratory scale
than seen in the homogenous cases (see figure 9). This is consistent with our findings
shown in figure 4(a) for larger t̂, which is greater in those experiments due to enhanced
α.

While the total volume of entrained fluid increases with time due to the increasing
interfacial area, the entrainment rate, we (see 2.12) decreases because the horizontal
velocity of the current decreases as u ∝ t−1/3 as can be inferred from (2.6) and (3.4).
This implies that the Péclet number Pe ∝ t−1/3 (see 2.13), and therefore at late times
the effects of dispersion may no longer be dominant.

The time scale for the transition between dispersive (advective) and diffusive behaviour
can be estimated by considering the velocity at the nose,

uN = φ
dxN
dt

=
2

3
ηN

(
φkgβC0q

ν

)1/3
1

t1/3
, (5.1)

which is characteristic of velocities within the current. The time at which the current
reaches Pe . 1 can then be straightforwardly given as

tD =
φkgβC0q

ν

(
2

3

τdpηN
Dm

)3

. (5.2)

At times t > tD diffusion may become significant, and thus the nature of entrainment
may change. In addition, over time t ∼ O(tD) the front of the gravity current may develop
a shock-type structure implying that the assumption of negligible lateral entrainment is
no longer valid.

A related analysis of the mixing of miscible fluids in a confined gravity current in
a porous medium was conducted by Szulczewski & Juanes (2013). In their analysis
Szulczewski & Juanes (2013) consider only molecular diffusion, and show that there are
five dominant regimes of mixing: an early-time diffusive regime, an S-slumping regime, a
straight-line slumping regime, a Taylor-slumping regime, and a late-time diffusive regime.
In the first and last regimes they show that the mixing between the gravity current
and ambient occurs purely due to molecular diffusion and the concentration follows an
error-function distribution, where solute mass flux, F , across a vertical cross-section
varies in time as F ∝ t−1/2. In the S-slumping regime the mass flux is independent of
time, whereas in the straight-line and Taylor slumping regimes, the flux F ∝ t−1/2 and
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F ∝ t−3/4, respectively. In our analysis the flux F ∼ uC and, in contrast to the work
of Szulczewski & Juanes (2013), follows a single dependence on time as F ∝ t−1/3 up
to times t ∼ tD. However, it is important to note that our results differ from that of
Szulczewski & Juanes (2013) both in that we consider a velocity-dependent dispersion
(rather than a molecular diffusivity), and because we consider the case of continuous flux
injection in an unconfined ambient in contrast to the fixed volumes of dense and ambient
fluid and a confined boundary. Flows in confined settings are likely to generate significant
vertical sheer, such that the feedback between the flow and the concentration distribution
may not satisfy the simple approximations model here which are more appropriate for
unconfined flows.

6. Conclusion

Motivated by the importance of mixing in geological flows, we have described a
modelling approach for understanding dispersive entrainment in gravity currents in
porous media. The mathematical model conserves mass and concentration, or buoyancy,
within the current and considers the addition of mass to the current through a dispersive
interface. For simplicity we assume that the entrainment is proportional to the velocity
of the current and may be characterised by a constant entrainment coefficient.

Here we show that a natural consequence of the model is that the buoyancy flux of
the current exhibits a self-similar behaviour and does not depend on the details of the
dispersive entrainment. Using a modified similarity solution we then derive the height
profiles and concentration of the gravity current, which prove to not be self-similar in
nature, and show that the shape of the current and the concentration change with
time. However, the total amount of entrainment and the mean concentration of the
contaminated region are self-similar and vary with dimensionless time as t̂1/3 and t̂−1/3,
respectively. We note that the resulting model recovers classical models of gravity currents
in porous media when dispersive entrainment is negligible.

We also present laboratory experiments which were performed using a dye-attenuation
technique. We first performed calibration experiments to find a functional relationship
between the dye concentration and image intensity. These calibration data were then
used to determine the concentration in the gravity current experiments. A total of 10
experiments were performed with varying volume flux and concentration at the source as
variables. For these experiments we find that the volume of the current grows measurably
by entrainment, and that the entrainment coefficient α = 0.013 ± 0.005. Furthermore,
the experimental results independently confirm the occurrence of entrainment in porous
media gravity currents and in general show a good agreement with the predictions of our
dispersive interface model.

We predict that at late times, when the velocity of the gravity current becomes
significantly small, it may be sensible to consider the effects of molecular diffusion and
also discard the assumption of long and thin current.

The modelling framework presented here, along with the experimental methodology,
provide a new approach to characterising mixing in porous media. In particular, we
anticipate that the approach may provide a significant simplification in cases where the
porous medium is heterogeneous across a range of scales. In addition, the transition
between dispersive entrainment, dominated by rapid advection, to late-time diffusive
mixing may yet be incorporated in such an averaged model with implications for the
ultimate fate of sequestered CO2, for example.
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