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Exploring causal influences 
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ABSTRACT 
 
Recent data mining techniques exploit patterns of statistical independence in multivariate data to make conjectures 
about cause/effect relationships. These relationships can be used to construct causal graphs, which are sometimes 
represented by weighted node-link diagrams, with nodes representing variables and combinations of weighted links 
and/or nodes showing the strength of causal relationships. We present an interactive visualization for causal graphs 
(ICGs), inspired in part by the Influence Explorer. The key principles of this visualization are as follows: Variables are 
represented with vertical bars attached to nodes in a graph. Direct manipulation of variables is achieved by sliding a 
variable value up and down, which reveals causality by producing instantaneous change in causally and/or 
probabilistically linked variables. This direct manipulation technique gives users the impression they are causally 
influencing the variables linked to the one they are manipulating. In this context, we demonstrate the subtle distinction 
between seeing and setting of variable values, and in an extended example, show how this visualization can help a user 
understand the relationships in a large variable set, and with some intuitions about the domain and a few basic concepts, 
quickly detect bugs in causal models constructed from these data mining techniques. 
 
Keywords: causality, causal perception, interactive causal graph, visualization, multivariate data. 
 
 

1. INTRODUCTION 
 
Tweedie et al [17] describe an engineering design tool they call the Influence Explorer (IE) that enables interactive, 
visual exploration of relationships between parameter and performance values of an engineering artifact. The 
fundamental model for a design task is a set of equations that give performance measures as functions of parameter 
values. Tweedie et al illustrate the parameter-performance relationships as a directed bipartite graph (Figure 1). IE uses 
this mathematical model to generate an exploration database, a subset of the design space consisting of more than 500 
randomly generated points from a user-selected region of parameter space. Each point represents a design instance, that 
is, it comprises values for each of the parameter and performance variables. The frequency distributions of the 
parameter and performance variables over this data are represented as histograms.  
 

 
Figure 1: Performance-parameter correspondence in the Influence Explorer (adapted from [17]) 

 
Figure 2 shows the IE interface. Performance histograms are displayed horizontally on the left and parameter 
histograms are shown vertically on the right. The white bars show variable frequencies for the entire exploration 
database. Sliders beneath each variable histogram are used to limit the range of the variable, in effect selecting a subset 
of the data. The white circles indicate the mean of the selected values for each variable. In Figure 2, a range of values 
for the performance variable S4 has been selected. (All values of the other variables are selected by default.) Black 
histogram bars show the frequency distributions of the variables over the selected subset of the data. The user can 
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interactively explore relationships between parameter and performance variables by moving the sliders around and 
observing the effects on the black histograms. 
 

 
Figure 2: The Influence Explorer Visual Interface 

 
On the one hand, the IE interface reflects the specific graphical topology of the engineering design problem. On the 
other, it abstracts the ontology of engineering design, which even in specific domains can contain many kinds of 
objects, to just two salient entities – parameter variables and performance variables. IE uses a bipartite graph to define 
the cause/effect relationships between parameter and performance values that problem solvers presumably have in mind 
while exploring design space. Moreover, IE’s approach is essentially statistical. Users select a desired range of 
performance and parameter values and IE computes, by summing over the appropriate subpopulation of the exploration 
database, new distributions for all variables. 

Semantically, this is similar to computing conditional probabilities or conditional expectations, and it occurred to us 
that this approach would be useful in almost any domain where relationships are statistical. Thus, we further generalized 
the IE abstraction. First, we eliminated the distinction between parameters and performances and replaced both with 
generic variables. Any variable is a performance indictor for its in-directed neighbours and a parameter for its out-
directed neighbours. Similarly, we generalized the simple bipartite model in Figure 1 of the engineering design problem 
to arbitrary directed graphs in more general domains. (Though these are restricted to acyclic graphs here, as are IE’s 
models, it is possible to extend the present ideas to certain cyclic graphs, but that is beyond the scope of this 
presentation.) As in the IE problem domain, arcs represent cause-effect relationships. The result is a graphical 
visualization that lets us extend the elegant core simplicity of IE to the representation of cause and effect in a large and 
general class of interesting statistical datasets.  

Figure 3 illustrates an instance of the kind of problem we have in mind. It shows a path diagram for success in academic 
publishing, as measured by publications and citation rate. The graph was based on data from 162 academics [12]. The path model 
incorporates seven variables: ABILITY, SEX, GPQ (Graduate Program Quality), QFJ  (Quality of First Job). PREPROD (Pre-PhD 
Production rate), PUBS (Publication rate), and CITES (Citation rate). 

 

 
Figure 3: Path analysis example from Rodgers and Maranto [12] 

 
This graph was constructed using path analysis [19] by a program called LISREL. The path coefficient on each path is a 
standardized regression coefficient between the connected variables.  

Figure 4 shows another example, this time from the structural equation modeling (SEM) literature. In structural 
equation modeling (SEM), social scientists model a domain with a hierarchy of regression equations or a path diagram 
that defines the relationships between the domain variables. The path diagram in Figure 4 depicts a SEM model for data 
collected by Holzinger and Swineford [6]. The data consisted of scores for 6 intelligence tests for 63 girls.  The 
rectangles represent observed variables – scores for the 6 intelligence tests. The ovals represent latent or unobserved 
variables. These include error terms for each of the test scores and two hypothesized latent variables – spatial ability and 
verbal ability. The double-headed arrow between these last indicates correlation with no causal attribution. Estimates for 
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the parameters of the model, including path weights and variances and covariances for latent variables, are derived from 
the data by various statistical methods. How well the model fits the data can then be assessed using a range of statistical 
tests. The model may be modified in light of this assessment and the process repeated; SEM is an iterative process. 

 
Figure 4: Structure Equation Modeling 

 
These graphs share basic structural properties with the graph underlying IE—they are both directed and acyclic. 

Moreover, both trends make causal interpretations of their arcs, as is the case in IE although this is not explicit. The 
causality is transitive, in the sense that the effect of one variable might be the cause of another. (We do not discuss 
undirected arcs in the present work.) One could imagine generalizing instances from a statistical model space 
corresponding to these diagrams and providing interfaces for these models that are very similar to the IE interface.  
However, the number of variables would not have to become very large before the interface became confusing and 
unwieldy. Therefore, we make a further simplification. We take the histogram distribution of the IE interface, 
approximate it with a normal distribution, and project it onto the nodes of a node-link diagram. Variable distributions 
are projected onto nodes as follows: Each node is a narrow rectangle, where the center of the bar is labeled with the 
prior expected value of that variable. The visualization represents a standard deviation as a shaded region above and 
below the mean. The distribution of the variable is normalized so that the bar represents three standard deviations from 
the prior expected value. This conveys approximately the same information as IE does. As in the preceding examples, 
variables are connected by directed arcs to indicate direct causality. Tversky et al [16] suggest this is a natural 
interpretation for an arrow. 

Direct manipulation of variables is achieved by sliding values up or down. This produces instantaneous changes in 
linked variables that indicate quantitative probabilistic and causal relationships. Although causality is difficult to define, 
we are most interested in understanding the consequences of interventions that are difficult to test experimentally, e.g., 
whether fluoridation of the water supply causes a decrease in cavities. 

This is consistent with our most immediate impressions of causality, which in everyday life are associated with the 
direct manipulation of objects.  When we manually move an object in our environment, we correctly perceive that we 
cause its displacement. This feeling of direct control is considered to be a central principle of contemporary direct 
manipulation interfaces [18]. We move a computer mouse and through a complex train of events, a cursor or other 
object moves on the screen or a window is resized. Because of the immediacy of the visual change corresponding to the 
hand movement, we feel that we have directly manipulated something even though there is nothing direct about it. The 
key requirements for this illusion of direct manipulation are rapid visual feedback (< 100 msec.) and a natural visual 
relationship between the user’s action and the onscreen event, e.g., we move our hand left, the object moves left. 
Though the optimal correspondence is by no means known, the result of successful direct manipulation is a feeling of 
transparency such that “the user is able to apply intellect directly to the task; the tool itself disappears” [13]. It is not true 
that any onscreen change concomitant with a user action is perceived as direct manipulation and the circumstances 
under which the illusion is achieved are likely to be complex. But certainly object movement linked to hand movement 
is most likely to promote the illusion.  

In IE, the user interactively selects a variable range and immediately sees the corresponding changes in the 
histograms. This enables a rapid exploration of the design space but, because of the rather complex pattern of change in 
the IE histograms, it is unlikely that there is a strong feeling of direct manipulation. We believe that the simpler node- 
link visualization we describe provides this kind of perception of causality. When the user manipulates a variable, the 
subsequent changes have a clear causal structure. The user can see the overall model as well as responses of the model 
to changes in variable values. 
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2. CAUSALITY AND DIMENSIONALITY 
 
A key motivation for information visualization is the so-called curse of dimensionality. As the examples of Figures 3 
and 4 show, many datasets have dimensionality greater than 2 or 3. Although the human eye can use differences in 
colour, movement or size to distinguish objects, employing too many of these techniques may result in a noisy and 
cluttered visualization. Yet collapsing of dimensions using clustering techniques results in loss of information.  

The goal of many data mining and data visualization techniques is to help the user discover and understand key 
cause-effect relationships. Indeed, this motivates many studies, despite the common caution against interpreting 
correlation as causation—researchers want to know the cause (or predictors) of cancer, the reasons for retention of 
undergraduate students, or the likely outcome of a marketing or campaign strategy. We tackle dimensionality here by 
explicitly representing cause and effect. Sometimes, cause-effect relationships are known at the outset, as in the case of 
IE, and the user mainly wishes to use the tool to quantitatively explore the consequences of observations and actions. 
This works well in cases where each variable has relatively few direct causes. For instance, in IE, we would not expect 
every parameter to directly influence every performance. When the cause-effect relationships are not known, we can use 
data mining tools like TETRAD to construct plausible causal models from raw data. In such cases, our visualization 
tool, coupled with human intuitions, can be used to confirm, refute, or debug aspects of such models, as we show below.  

The success of this representation depends on an assumption that the number of cause-effect relationships in a 
dataset is small relative to the number of variables. A typical objection is that almost all variables are related to each 
other. But causal graphs can be simplified by explicitly representing only direct causes. Formally, if the number of 
direct causes of any variable is bounded by some constant independent of n, the number of nodes, the number of 
relationships to be explicitly represented goes from O(n2)  to O(n). This permits a significant simplification, without 
collapsing variables away, and indirect relationships can be inferred from arrow sequences, so no information is lost. In 
fact, if the domain is not amenable to this simplification, (that is, if each variable is tightly bound to every other variable 
in direct cause-effect relationships), it is unlikely that any visualization technique will fare better.  

 
 

Figure 5: Student retention model from Druzdzel and Glymour [4] showing only cause-effect relationships. 
 

Figure 5 illustrates a medium view of a large set of variables from an earlier version of our implementation. Though 
the graph contains 18 variables, the number of direct causal relationships is relatively small. 

The graph is busy, but not hopelessly so. Our implementation also incorporates a semantic zoom [1,2], allowing the 
user to zoom in and see quantitative relationships, as shown in Figure 6. 
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Figure 6: Semantic Zoom close shot (detail). Expected values of variables, along with indications of standard deviations, 
are instantly propagated through the network as nodes are manipulated. The blue node indicates an observed variable and 
the red node indicates a set variable. 

 
As mentioned earlier, the user can select the mean of any variable and drag it with the mouse. In the example shown 

in Figure 6, changes propagate instantly. Variables causally proximate to the manipulated variables are most affected by 
changes, but this animation allows the eye to easily detect causal paths, and stronger relationships. 

A trivial example of how direct causality assists the computation is given by the three variable graph shown in 
Figure 7. This model represents a domain where rain makes streets wet and where wet streets result in slippery 
conditions. Knowing whether or not rain has occurred allows us to compute the probability it is slippery, even if we 
cannot observe whether it is wet. However, if the street is wet, the probability it is slippery is independent of rain, or any 
other cause (indicated by ellipsis). The cause of wetness is not relevant to slippery once the outcome of wet is known. 
This does not limit the expressiveness of the graphical representation. Should rain impact slippery directly, we can 
always add an arrow from rain to slippery but at extra cost of readability and computation. 

 
Figure 7: The rain-wet-slippery graph 

 
This sort of calculation is efficiently handled by a Bayes net [10] computational engine. For our implementation, we 

used the method of Lauritzen and Jensen [7] for systems of linear Gaussian variables. Their fast and stable algorithms 
allow instant propagation of conditional expectations throughout the net diagram. They perform well, even on graphs of 
more than 35 variables. 

These algorithms derive their effectiveness from the independence relationships implied by the relationships of 
direct causality. That is, given fixed outcomes for all of its direct causes (parents), a variable is independent of the 
outcomes of any predecessor causes. This permits a divide and conquer approach to a computation that is otherwise 
always exponential. (For example, in the worst case of discrete variables, all probabilities must be computed by 
summing up over the set of all joint outcomes, which is exponential.) Neufeld and Guan [8] give some intuitions behind 
the computational efficiency of this algorithm, but also see, for example, Pearl [10] for a deeper introductory discussion. 
Lauritzen and Jensen’s method uses sophisticated data structures to further optimize, but we do not give details here. In 
particular, although our implementation limits all relationships to linear Gaussians, this is not a limitation of the 
visualization framework itself. If the relationships in the data are more complex, the inference engine can be modified.  

Thus, conditional expectations based on regression models can be replaced with neural net relationships or 
relationships discovered with genetic algorithms, so long as there is an associated inference engine that can propagate 
changes in expectations in both directions. The visualization framework is a tool to help users understand cause and 
effect relationships; it does not presuppose a commitment to a particular algorithm.  
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The power of this paradigm is that we can represent arbitrarily complex relationships if we are prepared to pay the cost 
of less readability and less computational efficiency. However, where the domain permits, we can simplify the 
representation and achieve both readability and computational advantages. Furthermore, this can be done without loss of 
information. 
 

3. SEEING AND SETTING 
 
Dennis et al [3] report an interesting problem regarding sunscreen use and melanoma. Though most doctors believe that 
sunscreen use prevents melanoma, some reports suggest that sunscreen use increases the risk for melanoma. However, 
these reports don’t take into account different sunscreen usage rates by light-skinned people, who are more susceptible 
to melanoma, and by dark-skinned people, who are less susceptible to melanoma in the first place. Figure 8 shows the 
qualitative causal relationships involved between sunscreen use (S), melanoma (M) and darkness of skin (D), but does 
not indicate the sign or magnitude of the causal relationship. 
 

 
 

Figure 8: Qualitative causal model of sunscreen, melanoma and darkness of skin  
 
In the sequel, we are interested in two basic inference problems in multivariate datasets constructed from 

observational data; we call these seeing and setting. (Freedman [5] uses the terms observation and intervention.) Seeing 
is the common procedure of computing a conditional expectation—given a subpopulation of a known population, what 
is the posterior distribution of all related variables in the subpopulation? For example, we may wish to compute 
p(M|see(S)), the probability that someone we see using sunscreen might develop melanoma, or we might also be interested in the 
inverse probability p(S|see(M)), the probability that someone with melanoma uses sunscreen. These are straightforward probabilistic 
inferences, routinely handled by any probability inference engine, and for any variables, p(X|see(Y))=p(X|Y). (The reason for using 
the see functor will become apparent.) Thus, computing the consequences of an observation is equivalent to computing an ordinary 
conditional probability. For this illustrative example, we use discrete probabilities, but the argument generalizes to continuous 
variables. 
Someone who hears about the sunscreen studies described above wants to know whether to use sunscreen. The 
probabilistic relationships alone do not reveal the best course of action. This is where we need the distinction between 
seeing and setting. 

Whereas seeing is about the consequences of observations, setting is about the consequences of actions (or, as 
Freedman would say, interventions) and requires a subtler calculation. An individual wants to know the net effect of 
using sunscreen, for that individual, whether sunscreen use decreases or increases the overall probability of melanoma, 
in light of conflicting opinions. The probability of interest is p(M|set(S)), where we use the set functor to distinguish 
setting from seeing. People expect the probability of setting to be the same as the probability of seeing, namely, the 
conditional probability p(M|S). In this discrete formulation, D indicates dark skin and ¬D indicates light skin. If we use 
p(M|S) to compute our target probability, using the ordinary axioms of probability, we get  

P(M|set(S ))=p(M|S)=p(M|DS)p(D|S) + p(M|¬DS)p(¬D|S). 
 
But this formulation is wrong! Why? Because although P(M|DS) correctly counts the incidence of melanoma among 
dark-skinned sunscreen users, multiplying it by p(D|S) will not predict the posterior incidence of melanoma among 
dark-skinned sunscreen users in the new scenario, since it does not count dark-skinned persons currently not using 
sunscreen, who will use it in the new scenario. Thus, p(M|DS) should be multiplied by the proportion of all persons who 
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are dark-skinned. A symmetric argument applies to the second multiplicative term, and thus, the complete correct 
formulation is 

P(M|set(S))  = p(M|DS) p(D) + p(M|¬DS)p(¬D) . 
 
When D and S are independent, p(M|set(S)) = p(M|see(S)), but otherwise they are different. (In the restricted topology 
of the IE, there is no practical need for explicating this distinction.) Although this formulation goes back to Stotz and 
Wold [15], it has a very simple and elegant implementation in terms of our causal graphs. We just erase arcs incoming 
to the set variable, and change all distributions involving the set variable accordingly. For correctness, see Pearl [11].  
We believe this visualization is the only causal graph implementation that lets users distinguish between seeing and 
setting, which makes it useful in policy prediction. Below, we give an extended example to show its usefulness. 
 

4. DETAILED SUNSCREEN EXAMPLE 
 

Neufeld and Guan [8] demonstrate basic functionality of ICGs. Here we would like to demonstrate how ICGs can 
help users to explore and debug causal models with counterintuitive relationships. This is more so when the user has 
become comfortable with the meaning of setting, but even when this is not the case, setting can still help the user to 
understand relationships in the domain. 

In this example, we extend the sunscreen example of the preceding section to continuous variables. We therefore 
assume some continuous methodology for representing usage of sunscreen, incidence of melanoma, and skin type. This 
is because our implementation presently only handles continuous variables. For purpose of illustrating the usefulness of 
ICGS, we will suppose that reports showed that sunscreen had no effect on incidence of melanoma. (This is almost as 
surprising as the actual reports, and lets us extend the example somewhat.) This data is typical of pedagogical examples 
sometimes used to illustrate the concept of suppressors in social science courses. Our contrived model corresponds to 
intuitions, but with a twist. That is, people believe that sunscreen has a negative effect on melanoma, and that melanoma 
decreases with darkness of skin. In our model, these causal relationships hold, but the twist is that heavy users of 
sunscreen tend to have lighter skin. This is reasonable, but we have stretched the data so far that in the aggregate data, 
sunscreen use appears to have no effect on melanoma. It would be possible to stretch the example even further, so that 
sunscreen usage appears to have a positive effect on melanoma in the aggregate data, consistent with the reports, which 
would provide a continuous instance of Simpson’s Paradox [9], where associations in aggregate data reverse themselves 
in subsets.   

Simpson’s Paradox is not about the domain, but about the numbers. It is easy enough to contrive a domain where 
sunscreen does in fact have a positive causal influence on melanoma, for instance, if sunscreens, although preventing 
exposure to UV radiation, were carcinogenic in other ways. So let’s avoid this issue by supposing that, although the 
aggregate data appears to conflict with expectations, sunscreen is in fact not carcinogenic.  

4.1 Debugging the model 

We begin by supposing that the user uses a data mining tool such as TETRAD [14] to construct a first cut of the 
causal relationships in a set of data.  

TETRAD works by using conditional independencies in the data to construct causal relations. The following is an 
oversimplification, but gives the basic idea: Suppose that in some context, variables A and B are independent, but that 
both are associated with C in all contexts. Tetrad uses the fact that there is always an association between A and C to 
draw an edge from A to C, and similarly from B to C. Since there is no association between A and B, they are not 
connected. Next, TETRAD decides how to orient the edges. Combinatorially, there are only four possibilities, which we 
might write as A → C → B , B → C → A , B ← C → A , B → C ← A . The first two possibilities would imply an 
association (correlation) between A and B, since the causal relationship is transitive. The same is true of the third 
possibility—effects of a common cause are normally correlated. The only possible orientation of arcs that does not 
contradict the independence of A and B is B → C ← A   

We have intentionally fooled TETRAD, using the knowledge that it builds causal models from statistical 
independencies, by hiding an spurious independency in the data that is not due to “true” independence but arises from 
two causal influences canceling each other out. TETRAD will generate the model shown in Figure 9.  
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Figure 9: First TETRAD Model of Sunscreen Problem 
 

The model shows a world where melanoma and sunscreen are independent common potential causes of darkness of 
skin, and mathematically is a minimal representation of possible causal relationships in a world coherent with the raw 
data. (In this model, low values for darkness mean lighter skin.) Although this model is graphically faithful to the 
independencies in the distribution, the user should immediately recognize that the model is incorrect because of the 
nature of the variables involved. (In domains where the variables are not so well understood, the user can use the model 
to see what predictions it makes about interventions, and test these predictions in the actual domain. This would involve 
experimenting with setting, which we discuss in a more practical setting below.) 

In any event, suppose the user eventually constructs the correct model of causal relationships shown in Figure 10. 
 

 
 

Figure 10: Sunscreen-Melanoma-Darkness graph before manipulation. 
 

The user has also built a coherent hierarchy of regression equations for all variables using normalized values. Figure 
10 shows initial expected values and standard deviation of all variables. Having constructed the right model, the user 
wishes to explore the relationship between sunscreen and melanoma.
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4.2  Exploring causal influences with seeing 

Figure 11 shows the results of the user’s first explorations with seeing. The user grabs the value of the sunscreen 
variable, drags it up and down, and finds from the contrived data that sunscreen and melanoma are unrelated! Changes 
to sunscreen change darkness significantly, but melanoma barely moves.  (This is not a surprise, since TETRAD found 
those two variables independent.) 

The statistical explanation is that darkness is a suppressor variable or confound. That is, light-skinned individuals 
are more likely to use sunscreen, but they are also more likely to develop melanoma than dark-skinned people. 
 

 
 

Figure 11: Melanoma does not respond much to sunscreen. Added red arrows indicate mouse movement during interaction 
 

An experienced data analyst would revisit the data and ask what happens when sunscreen is manipulated after 
darkness is first fixed at some value. This data analysis technique is easy to do with an ICG. Figure 12 illustrates what 
needs to be done.  

The user must first choose to see a fixed value for the darkness variable, and then see a range of values for 
sunscreen by dragging it up and down. The pairs of before and after images in Figure 12 now reveal the correct 
relationship between sunscreen and melanoma. Whether darkness is high or low, fixing darkness, and then increasing 
sunscreen results in a decrease to melanoma. Manipulating a variable by seeing a value corresponds to computing 
conditional expectations of all other variables in the domain, given the observed value. So when the user fixes darkness, 
expected values for sunscreen and melanoma are calculated based on the selected value for darkness. When the user 
then sees different values for sunscreen, melanoma responds as expected. Moreover, the same result will obtain for any 
values the user chooses for the darkness variable.  

The reason the user needs to perform a double seeing operation is that there are two paths of probabilistic influence 
from sunscreen to melanoma that cancel each other out. One is the direct unit path, and the other is the indirect path 
from sunscreen to darkness to melanoma. This is all the more confusing because this probabilistic path goes “against 
the arrows”. That is why, in real world examples, a zero net effect, or net effect of the wrong sign, is so puzzling. By 
fixing the darkness variable, the positive probabilistic path of influence from sunscreen to melanoma via darkness is 
effectively blocked, and the ICG can reveal the relationship correctly.  

 

     
Figure 12: Melanoma responds to seeing changes in sunscreen within a particular skin type. The top pair of graphs shows the change 
in melanoma with sunscreen for light-skinned persons, and the bottom pair shows melanoma change for dark-skinned persons. 
Ranges differ, but melanoma incidence consistently decreases with increased sunscreen usage. 
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Because there are few potential confounds in this three node world, trying all see operations is not logistically difficult. 
However, in a richer dataset, this process may be cumbersome. This is where setting becomes important.  
 
4.4 Exploring causal influences with setting 
If the user simply sets the sunscreen variable, melanoma responds appropriately, and more importantly, consistently 
with the cause-effect relationship that actually exists in this (contrived) world. The before/after graphs in Figure 13 
show the visualization. 
 

 
Figure 13: Melanoma responds appropriately to setting of the sunscreen variable. 

 
To understand why this happens, revisit the semantics of setting as given in Section 3. The definition of setting cannot 
be derived mechanically from the axioms of probability, but rather uses probabilities from a known world in a novel 
way to make predictions about an unknown world resulting from an intervention. In terms of probabilistic influences, 
setting accomplishes the same thing as the double seeing operation by canceling the positive probabilistic influence 
sunscreen has via the path through darkness. Recall that in Section 3, we mentioned that this method has a simple and 
elegant interpretation in terms of the graphical models—the arc between darkness and sunscreen is erased, eliminating 
the positive causal path explicitly. (As a cue to the user, we show the arc disappearing in the visualization.) 
 

5 DISCUSSION 
 
We have generalized the ideas behind the Influence Explorer to almost arbitrary statistical domains. Where IE performs 
an essentially statistical strategy by summing over a subpopulation of a set of randomly generated model instances, we 
propagate statistical inferences efficiently by borrowing the Bayes net technology [7, 10]. We further simplify IE by 
projecting distributions onto a graphical representation of the domain, so that the user can maintain a graphical model of 
cause and effect while observing the consequences of actions. Our visualization of variable manipulation is linked to the 
deep notion of causality as the ability to predict the consequences of an intervention, but, just as IE abstracts 
engineering artifacts over domains, we abstract causality over domains as a directed graph. Where IE implicitly gives its 
users the ability to understand the consequences of seeing and setting different types of variables, our visualization 
makes this explicit. 

The separate notions of setting and seeing come from Pearl [11]. Setting is presently a little known concept: the 
ideas behind it are not widely known even within the structure equation community, and we do not expect the idea to be 
absorbed quickly by statistically inexperienced users. However, because we believe our visual metaphor for setting is an 
excellent abstraction of causal effect, a visualization of this type has the potential to rapidly educate users who may not 
be statistically sophisticated about the kinds of subtle interactions variables may have, just as pie charts and bar graphs 
have proved to be vivid expressions of probability distributions to a wide audience. 

The main contribution of this work is to demonstrate the feasibility of performing principled calculations quickly 
enough to allow real-time animations of both seeing and setting on graphs of modest size. The examples here (including 
the graphs of Figures 3, 5 and 6) performed well on a 2Ghz desktop machine. In ongoing work, we are refining the 
graphical presentation. Figure 14 shows a visualization of the graph that uses normal curves rather than vertical bars, as 
well as ghosts of the prior distributions. This more completely accomplishes the goal of projecting the prior and 
posterior distributions onto the nodes in the style of IE.  
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Figure 14: Bell curves represent distributions and ghosting is used to present both prior and posterior distributions. 
 
This work did not discuss handling of cycles (systems with feedback) or undirected edges in path analysis, which 
indicate the presence of latent variables, i.e., hidden common causes. These problems are likewise the subject of current 
work. 
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