428 research outputs found
Attitudes and perceptions of general education students toward students who receive additional education services
Includes bibliographical references
The use of disjunct eddy sampling methods for the determination of ecosystem level fluxes of trace gases
The concept of disjunct eddy sampling (DES)
for use in measuring ecosystem-level micrometeorological
fluxes is re-examined. The governing equations are discussed
as well as other practical considerations and guidelines concerning
this sampling method as it is applied to either the
disjunct eddy covariance (DEC) or disjunct eddy accumulation
(DEA) techniques. A disjunct eddy sampling system
was constructed that could either be combined with relatively
slow sensors (response time of 2 to 40 s) to measure
fluxes using DEC, or could also be used to accumulate samples
in stable reservoirs for later laboratory analysis (DEA
technique). Both the DEC and DEA modes of this sampler
were tested against conventional eddy covariance (EC) for
fluxes of either CO2 (DEC) or isoprene (DEA). Good agreement
in both modes was observed relative to the EC systems.
However, the uncertainty in a single DEA flux measurement
was considerable (40%) due to both the reduced statistical
sampling and the analytical precision of the concentration
difference measurements. We have also re-investigated
the effects of nonzero mean vertical wind velocity on accumulation
techniques as it relates to our DEA measurements.
Despite the higher uncertainty, disjunct eddy sampling can
provide an alternative technique to eddy covariance for determining
ecosystem-level fluxes for species where fast sensors
do not currently exist
Using Lock Servers to Scale Real-Time Locking Protocols: Chasing Ever-Increasing Core Counts
During the past decade, parallelism-related issues have been at the forefront of real-time systems research due to the advent of multicore technologies. In the coming years, such issues will loom ever larger due to increasing core counts. Having more cores means a greater potential exists for platform capacity loss when the available parallelism cannot be fully exploited. In this paper, such capacity loss is considered in the context of real-time locking protocols. In this context, lock nesting becomes a key concern as it can result in transitive blocking chains that force tasks to execute sequentially unnecessarily. Such chains can be quite long on a larger machine. Contention-sensitive real-time locking protocols have been proposed as a means of "breaking" transitive blocking chains, but such protocols tend to have high overhead due to more complicated lock/unlock logic. To ease such overhead, the usage of lock servers is considered herein. In particular, four specific lock-server paradigms are proposed and many nuances concerning their deployment are explored. Experiments are presented that show that, by executing cache hot, lock servers can enable reductions in lock/unlock overhead of up to 86%. Such reductions make contention-sensitive protocols a viable approach in practice
Using Lock Servers to Scale Real-Time Locking Protocols: Chasing Ever-Increasing Core Counts (Artifact)
During the past decade, parallelism-related issues have been at the forefront of real-time systems research due to the advent of multicore technologies. In the coming years, such issues will loom ever larger due to increasing core counts. Having more cores means a greater potential exists for platform capacity loss when the available parallelism cannot be fully exploited. In this work, such capacity loss is considered in the context of real-time locking protocols. In this context, lock nesting becomes a key concern as it can result in transitive blocking chains that force tasks to execute sequentially unnecessarily. Such chains can be quite long on a larger machine. Contention-sensitive real-time locking protocols have been proposed as a means of ``breaking\u27\u27 transitive blocking chains, but such protocols tend to have high overhead due to more complicated lock/unlock logic. To ease such overhead, the usage of lock servers is considered herein. In particular, four specific lock-server paradigms are proposed and many nuances concerning their deployment are explored. Experiments are presented that show that, by executing cache hot, lock servers can enable reductions in lock/unlock overhead of up to 86%. Such reductions make contention-sensitive protocols a viable approach in practice. This artifact contains the implementation of two contention-sensitive locking protocol variants implemented with four proposed lock-server paradigms, as well as the experiments with which they were evaluated
Concurrency groups: a new way to look at real-time multiprocessor lock nesting
When designing a real-time multiprocessor locking protocol, the allowance of lock nesting creates complications that can inhibit parallelism. Such protocols are typically designed by focusing on the arbitration of resource requests that should be prohibited from executing concurrently. This paper proposes "concurrency groups," a new concept that reflects an alternative point of view that focuses instead on requests that can be allowed to execute concurrently. A concurrency group is simply a group of lock requests, determined offline, that can safely execute together. This paper's main contribution is the CGLP, a new real-time multiprocessor locking protocol that supports lock nesting through the use of concurrency groups. The CGLP is able to reap runtime parallelism benefits that have eluded prior protocols by investing effort offline in the construction of concurrency groups. A schedulability study is presented to quantify these benefits, as well as an approach to determining such groups using an Integer Linear Program (ILP) solver, which we show to be efficient in practice
Seasonal trends in concentrations and fluxes of volatile organic compounds above central London
Concentrations and fluxes of seven volatile organic compounds (VOCs) were measured between August and December 2012 at a roof-top site in central London as part of the ClearfLo project (Clean Air for London). VOC concentrations were quantified using a proton transfer reaction-mass spectrometer and fluxes were calculated using a virtual disjunct eddy covariance technique. The median VOC fluxes, including aromatics, oxygenated compounds and isoprene, ranged from 0.07 to 0.33 mg mā2 hā1 and mixing ratios were 7.27 ppb for methanol (m / z 33) and <1 ppb for the remaining compounds. Strong relationships were observed between most VOC fluxes and concentrations with traffic density, but also with photosynthetically active radiation (PAR) and temperature for the oxygenated compounds and isoprene. An estimated 50ā90 % of aromatic fluxes were attributable to traffic activity, which showed little seasonal variation, suggesting boundary layer effects or possibly advected pollution may be the primary causes of increased concentrations of aromatics in winter. PAR and temperature-dependent processes accounted for the majority of isoprene, methanol and acetaldehyde fluxes and concentrations in August and September, when fluxes and concentrations were largest. Modelled biogenic isoprene fluxes using the G95 algorithm agreed well with measured fluxes in August and September, due to urban vegetation. Comparisons of estimated annual benzene emissions from the London and National Atmospheric Emissions Inventory agreed well with measured benzene fluxes. Flux footprint analysis indicated emission sources were localized and that boundary layer dynamics and source strengths were responsible for temporal and spatial VOC flux and concentration variability during the measurement period
Light Reading: Optimizing Reader/Writer Locking for Read-Dominant Real-Time Workloads (Artifact)
This paper is directed at reader/writer locking for read-dominant real-time workloads. It is shown that state-of-the-art real-time reader/writer locking protocols are subject to performance limitations when reads dominate, and that existing schedulability analysis fails to leverage the sparsity of writes in this case. A new reader/writer locking-protocol implementation and new inflation-free schedulability analysis are proposed to address these problems. Overhead evaluations of the new implementation show a decrease in overheads of up to 70% over previous implementations, leading to throughput for read operations increasing by up to 450%. Schedulability experiments are presented that show that the analysis results in schedulability improvements of up to 156.8% compared to the existing state-of-the-art approach
Operation of EMEP āsupersitesā in the United Kingdom. Annual report for 2008.
As part of its commitment to the UN-ECE Convention on Long-range Transboundary Air Pollution the United Kingdom operates two āsupersitesā reporting data to the Co-operative Programme for Monitoring and Evaluation of the Long-range Transmission of Air Pollutants in Europe (EMEP).
This report provides the annual summary for 2008, the second full calendar year of operation of the first EMEP āsupersiteā to be established in the United Kingdom. Detailed operational reports have been submitted to Defra every 3 months, with unratified data. This annual report contains a summary of the ratified data for 2008.
The EMEP āsupersiteā is located in central southern Scotland at Auchencorth (3.2oW, 55.8oN), a remote rural moorland site ~20 km south-west of Edinburgh. Monitoring operations started formally on 1 June 2006.
In addition to measurements made specifically under this contract, the Centre for Ecology & Hydrology also acts as local site operator for measurements made under other UK monitoring networks: the Automated Urban and Rural Network (AURN), the UK Eutrophication and Acidification Network (UKEAP), the UK Hydrocarbons Network, and the UK Heavy Metals Rural Network. Some measurements were also made under the auspices of the āAir Pollution Deposition Processesā contract. All these associated networks are funded by Defra.
This report summarises the measurements made between January and December 2008, and presents summary statistics on average concentrations.
The site is dominated by winds from the south-west, but wind direction data highlight potential sources of airborne pollutants (power stations, conurbations).
The average diurnal patterns of gases and particles are consistent with those expected for a remote rural site.
The frequency distributions are presented for data where there was good data capture throughout the whole period. Some components (e.g. black carbon) show log-normal frequency distributions, while other components (e.g. ozone) have more nearly normal frequency distributions.
A case study is presented for a period in June 2008, showing the influence of regional air pollutants at this remote rural site.
All the data reported under the contract are shown graphically in the Appendix
Qualitative impact assessment of land management interventions on ecosystem services (āQEIAā). Report-3 theme-1: air quality
This project assessed the impacts of 741 potential land management actions, suitable for agricultural land in England, on the Farming & Countryside Programmeās Environmental Objectives (and therefore Environment Act targets and climate commitments) through 53 relevant environmental and cultural service indicators. The project used a combination of expert opinion and rapid evidence reviews, which included 1000+ pages of evidence in 10 separate reports with reference to over 2400 published studies, and an Integrated Assessment comprising expert-derived qualitative impact scores. The project has ensured that ELM schemes are evidence-based, offer good value for money, and contribute to SoS priorities for farming
- ā¦