
Using Lock Servers to Scale Real-Time Locking
Protocols: Chasing Ever-Increasing Core
Counts (Artifact)∗

Catherine E. Nemitz
The University of North Carolina at Chapel Hill, USA
nemitz@cs.unc.edu

Tanya Amert
The University of North Carolina at Chapel Hill, USA
tamert@cs.unc.edu

James H. Anderson
The University of North Carolina at Chapel Hill, USA
anderson@cs.unc.edu

Abstract
During the past decade, parallelism-related issues
have been at the forefront of real-time systems re-
search due to the advent of multicore technologies.
In the coming years, such issues will loom ever lar-
ger due to increasing core counts. Having more
cores means a greater potential exists for platform
capacity loss when the available parallelism cannot
be fully exploited. In this work, such capacity loss
is considered in the context of real-time locking
protocols. In this context, lock nesting becomes
a key concern as it can result in transitive block-
ing chains that force tasks to execute sequentially
unnecessarily. Such chains can be quite long on
a larger machine. Contention-sensitive real-time
locking protocols have been proposed as a means
of “breaking” transitive blocking chains, but such

protocols tend to have high overhead due to more
complicated lock/unlock logic. To ease such over-
head, the usage of lock servers is considered herein.
In particular, four specific lock-server paradigms
are proposed and many nuances concerning their de-
ployment are explored. Experiments are presented
that show that, by executing cache hot, lock serv-
ers can enable reductions in lock/unlock overhead
of up to 86%. Such reductions make contention-
sensitive protocols a viable approach in practice.
This artifact contains the implementation of two
contention-sensitive locking protocol variants imple-
mented with four proposed lock-server paradigms,
as well as the experiments with which they were
evaluated.

2012 ACM Subject Classification Computer systems organization → Real-time systems, Computer
systems organization → Embedded and cyber-physical systems, Software and its engineering → Mutual
exclusion, Software and its engineering → Real-time systems software, Software and its engineering →
Synchronization, Software and its engineering → Process synchronization
Keywords and phrases multiprocess locking protocols, nested locks, priority-inversion blocking, reader-
/writer locks, real-time locking protocols
Digital Object Identifier 10.4230/DARTS.4.2.2
Related Article Catherine E. Nemitz, Tanya Amert, and James H. Anderson, “Using Lock Servers to
Scale Real-Time Locking Protocols: Chasing Ever-Increasing Core Counts”, in Proceedings of the 30th
Euromicro Conference on Real-Time Systems (ECRTS 2018), LIPIcs, Vol. 106, pp. 25:1–25:23, 2018.
http://dx.doi.org/10.4230/LIPIcs.ECRTS.2018.25
Related Conference 30th Euromicro Conference on Real-Time Systems (ECRTS 2018), July 3–6, 2018,
Barcelona, Spain

∗ Work supported by NSF grants CNS 1409175, CPS 1446631, CNS 1563845, and CNS 1717589, ARO grant
W911NF-17-1-0294, and funding from General Motors. This material is based upon work supported by the
National Science Foundation Graduate Research Fellowship Program under Grant No. DGS-1650116. Any
opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the National Science Foundation.

© Catherine E. Nemitz, Tanya Amert, and James H. Anderson;
licensed under Creative Commons Attribution 3.0 Germany (CC BY 3.0 DE)

Dagstuhl Artifacts Series, Vol. 4, Issue 2, Artifact No. 2, pp. 2:1–2:3
Dagstuhl Artifacts Series
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/159309594?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:nemitz@cs.unc.edu
mailto:tamert@cs.unc.edu
mailto:anderson@cs.unc.edu
http://dx.doi.org/10.4230/DARTS.4.2.2
http://dx.doi.org/10.4230/LIPIcs.ECRTS.2018.25
https://creativecommons.org/licenses/by/3.0/de/deed.en
http://www.dagstuhl.de/darts
http://www.dagstuhl.de


2:2 Using Lock Servers to Scale Real-Time Locking Protocols (Artifact)

1 Scope

This artifact was used in the evaluation portion of the conference paper [2] to generate figures and
form the numbered observations.

More specifically, the artifact showed a significant difference in blocking and overhead between
MCS locks [1] and the C-RNLP (Contention-sensitive Real-Time Nested Locking Protocol) variants.
Employing a lock server or multiple lock servers significantly lowers overhead on our platform.
The artifact also explores the performance of each lock server variant with different numbers of
cores and sockets in use.

2 Content

The artifact package includes:
Readme guide: readme
Makefile: Makefile
Source code: src/
Include files: include/
Scripts: scripts/
Example plots: plots/artifact_evaluation_examples/
Paper: paper.pdf

3 Getting the artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the
Dagstuhl Research Online Publication Server (DROPS). In addition, the artifact is also available
at: https://cs.unc.edu/~anderson/papers/ecrts18b_code.tgz.

4 Tested platforms

The artifact was originally tested on a dual-socket, 18-cores-per-socket Intel Xeon E5-2699. Each
core of this platform has a 32KB L1 data cache and a 32KB L1 instruction cache. Pairs of cores
share a unified 256KB L2 cache, and all cores on a socket share a unified 45MB L3 cache. The
experiments conducted on this platform led to the numbered observations in the paper [2].

The artifact was additionally tested on a four-socket, 6-cores-per-socket Intel Xeon L7455. On
this machine, each core has a 32KB L1 data cache and a 32KB L1 instruction cache. Additionally,
there is a 3MB L2 cache, and all cores on a socket share a 12MB L3 cache. The results of this
evaluation matched the overarching trends originally observed [3].

In general, to see similar trends as those presented in the paper, a multicore machine with
multiple sockets is required. Given such a platform, similar trends are expected, though exact
measurements will vary.

5 License

The artifact is available under license the Creative Commons Attribution 3.0 Unported license
(CC-BY 3.0). For details, see http://creativecommons.org/licenses/by/3.0/.

6 MD5 sum of the artifact

27f58adbc5448551931207e0eedbc0aa

https://cs.unc.edu/~anderson/papers/ecrts18b_code.tgz


C. E. Nemitz, T. Amert, and J. H. Anderson 2:3

7 Size of the artifact

1.45 MB

Acknowledgements. The authors thank the reviewers for their evaluation of and helpful feedback
about this artifact.

References
1 J. Mellor-Crummey and M. Scott. Algorithms for

scalable synchronization of shared-memory multi-
processors. Transactions on Computer Systems,
9(1), 1991.

2 C. Nemitz, T. Amert, and J. Anderson. Using lock
servers to scale real-time locking protocols: Chas-
ing ever-increasing core counts. In ECRTS 2108.

3 C. Nemitz, T. Amert, and J. Anderson. Using lock
servers to scale real-time locking protocols: Chas-
ing ever-increasing core counts (extended version),
2018. URL: http://www.cs.unc.edu/~anderson/
papers.html.

DARTS

http://www.cs.unc.edu/~anderson/papers.html
http://www.cs.unc.edu/~anderson/papers.html

	Scope
	Content
	Getting the artifact
	Tested platforms
	License
	MD5 sum of the artifact
	Size of the artifact

