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Abstract
During the past decade, parallelism-related issues
have been at the forefront of real-time systems re-
search due to the advent of multicore technologies.
In the coming years, such issues will loom ever lar-
ger due to increasing core counts. Having more
cores means a greater potential exists for platform
capacity loss when the available parallelism cannot
be fully exploited. In this work, such capacity loss
is considered in the context of real-time locking
protocols. In this context, lock nesting becomes
a key concern as it can result in transitive block-
ing chains that force tasks to execute sequentially
unnecessarily. Such chains can be quite long on
a larger machine. Contention-sensitive real-time
locking protocols have been proposed as a means
of “breaking” transitive blocking chains, but such

protocols tend to have high overhead due to more
complicated lock/unlock logic. To ease such over-
head, the usage of lock servers is considered herein.
In particular, four specific lock-server paradigms
are proposed and many nuances concerning their de-
ployment are explored. Experiments are presented
that show that, by executing cache hot, lock serv-
ers can enable reductions in lock/unlock overhead
of up to 86%. Such reductions make contention-
sensitive protocols a viable approach in practice.
This artifact contains the implementation of two
contention-sensitive locking protocol variants imple-
mented with four proposed lock-server paradigms,
as well as the experiments with which they were
evaluated.
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2:2 Using Lock Servers to Scale Real-Time Locking Protocols (Artifact)

1 Scope

This artifact was used in the evaluation portion of the conference paper [2] to generate figures and
form the numbered observations.

More specifically, the artifact showed a significant difference in blocking and overhead between
MCS locks [1] and the C-RNLP (Contention-sensitive Real-Time Nested Locking Protocol) variants.
Employing a lock server or multiple lock servers significantly lowers overhead on our platform.
The artifact also explores the performance of each lock server variant with different numbers of
cores and sockets in use.

2 Content

The artifact package includes:
Readme guide: readme
Makefile: Makefile
Source code: src/
Include files: include/
Scripts: scripts/
Example plots: plots/artifact_evaluation_examples/
Paper: paper.pdf

3 Getting the artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the
Dagstuhl Research Online Publication Server (DROPS). In addition, the artifact is also available
at: https://cs.unc.edu/~anderson/papers/ecrts18b_code.tgz.

4 Tested platforms

The artifact was originally tested on a dual-socket, 18-cores-per-socket Intel Xeon E5-2699. Each
core of this platform has a 32KB L1 data cache and a 32KB L1 instruction cache. Pairs of cores
share a unified 256KB L2 cache, and all cores on a socket share a unified 45MB L3 cache. The
experiments conducted on this platform led to the numbered observations in the paper [2].

The artifact was additionally tested on a four-socket, 6-cores-per-socket Intel Xeon L7455. On
this machine, each core has a 32KB L1 data cache and a 32KB L1 instruction cache. Additionally,
there is a 3MB L2 cache, and all cores on a socket share a 12MB L3 cache. The results of this
evaluation matched the overarching trends originally observed [3].

In general, to see similar trends as those presented in the paper, a multicore machine with
multiple sockets is required. Given such a platform, similar trends are expected, though exact
measurements will vary.

5 License

The artifact is available under license the Creative Commons Attribution 3.0 Unported license
(CC-BY 3.0). For details, see http://creativecommons.org/licenses/by/3.0/.

6 MD5 sum of the artifact

27f58adbc5448551931207e0eedbc0aa

https://cs.unc.edu/~anderson/papers/ecrts18b_code.tgz
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7 Size of the artifact

1.45 MB
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