
Light Reading: Optimizing Reader/Writer Locking for
Read-Dominant Real-Time Workloads (Artifact)
Catherine E. Nemitz #

University of North Carolina at Chapel Hill, NC, USA

Shai Caspin #

University of North Carolina at Chapel Hill, NC, USA

James H. Anderson #

University of North Carolina at Chapel Hill, NC, USA

Bryan C. Ward #

MIT Lincoln Laboratory, Lexington, MA, USA

Abstract
This paper is directed at reader/writer locking for
read-dominant real-time workloads. It is shown
that state-of-the-art real-time reader/writer locking
protocols are subject to performance limitations
when reads dominate, and that existing schedulab-
ility analysis fails to leverage the sparsity of writes
in this case. A new reader/writer locking-protocol
implementation and new inflation-free schedulab-
ility analysis are proposed to address these prob-

lems. Overhead evaluations of the new implement-
ation show a decrease in overheads of up to 70%
over previous implementations, leading to through-
put for read operations increasing by up to 450%.
Schedulability experiments are presented that show
that the analysis results in schedulability improve-
ments of up to 156.8% compared to the existing
state-of-the-art approach.

2012 ACM Subject Classification Computer systems organization → Real-time system architecture;
Computing methodologies → Shared memory algorithms
Keywords and phrases Reader/writer, real-time, synchronization, spinlock, RMR complexity
Digital Object Identifier 10.4230/DARTS.7.1.3
Acknowledgements DISTRIBUTION STATEMENT A. Approved for public release. Distribution is
unlimited. This material is based upon work supported by the Under Secretary of Defense for Research
and Engineering under Air Force Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions or
recommendations expressed in this material are those of the author(s) and do not necessarily reflect the
views of the Under Secretary of Defense for Research and Engineering. © 2021 Massachusetts Institute
of Technology. Delivered to the U.S. Government with Unlimited Rights, as defined in DFARS Part
252.227-7013 or 7014 (Feb 2014). Notwithstanding any copyright notice, U.S. Government rights in this
work are defined by DFARS 252.227-7013 or DFARS 252.227-7014 as detailed above. Use of this work
other than as specifically authorized by the U.S. Government may violate any copyrights that exist in
this work. Work was supported by NSF grants CNS 1563845, CNS 1717589, CPS 1837337, CPS 2038855,
and CPS 2038960, ARO grant W911NF-20-1-0237, and ONR grant N00014-20-1-2698. This material is
based upon work supported by the National Science Foundation Graduate Research Fellowship Program
under Grant No. DGS-1650116. Any opinions, findings, and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily reflect the views of the National Science
Foundation. This work was also supported by a Dissertation Completion Fellowship from the UNC
Graduate School.

Related Article Catherine E. Nemitz, Shai Caspin, James H. Anderson, and Bryan C. Ward, “Light
Reading: Optimizing Reader/Writer Locking for Read-Dominant Real-Time Workloads”, in 33rd
Euromicro Conference on Real-Time Systems (ECRTS 2021), LIPIcs, Vol. 196, pp. 6:1–6:22, 2021.
https://doi.org/10.4230/LIPIcs.ECRTS.2021.6

Related Conference 33rd Euromicro Conference on Real-Time Systems (ECRTS 2021), July 5–9, 2021,
Virtual Conference

© Catherine E. Nemitz, Shai Caspin, James H. Anderson, and Bryan C. Ward;
licensed under Creative Commons License CC-BY 4.0

Dagstuhl Artifacts Series, Vol. 7, Issue 1, Artifact No. 3, pp. 3:1–3:3
Dagstuhl Artifacts Series
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nemitz@cs.unc.edu
mailto:shai@unc.edu
mailto:anderson@cs.unc.edu
mailto:bryan.ward@ll.mit.edu
https://doi.org/10.4230/DARTS.7.1.3
https://doi.org/10.4230/LIPIcs.ECRTS.2021.6
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/darts
https://www.dagstuhl.de


3:2 Light Reading

1 Scope

In this document, we provide an overview of how to replicate results from our paper. Figures 7, 8,
and 9 and Table 2 can be replicated with our artifact package. These results are generated from
two separate evaluations. The first is our overhead evaluation, which measures and compares the
overhead of the locking protocols. The second is our set of schedulability experiments. Details
of how to reproduce our results are given in the README files corresponding to those two
experiments.

2 Content

Here we list the most relevant directories and files for both evaluations. All of the files and
directories described for the overhead evaluation are in overhead/, and all of those for the
schedulability evaluation are in schedulability/.

2.1 Overhead Evaluation
The artifact package includes:

Readme guide: overhead/README.md
Makefile: overhead/Makefile
Experiment setup: overhead/src/main_rw.c
Scripts: overhead/scripts/
Plotting: overhead/scripts/plots_rw.py
Example plots: overhead/sampleplots/

The code matching the algorithm described in Alg. 1 is here: overhead/include/no-pfl.h, and
the version with overhead measurements can be found here: overhead/include/pfl.h.

2.2 Schedulability Evaluation
This portion of the artifact includes:

Readme guide: schedulability/README.TXT
Makefile: schedulability/lib/schedcat/Makefile
Experiment setup: schedulability/exp/pedf_lp.py
Plots: schedulability/plots/

The optimization problem constraints are in two files, listed with the following command.
ls schedulability/lib/schedcat/native/src/blocking/linprog/lp_rw_phase_fair*

3 Getting the artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the
Dagstuhl Research Online Publication Server (DROPS). In addition, the artifact is also available
at https://cs.unc.edu/~nemitz/papers/ecrts21_artifact.tgz.

4 Tested platforms

4.1 Overhead Evaluation
The overhead experiment has been tested on both Linux and LITMUSRT (an extension of Linux).
This portion of our evaluation is in part based on an existing artifact [5] and is also based on a
prior implementation of phase-fair locks [4]. A similar system setup is required, including:

https://cs.unc.edu/~nemitz/papers/ecrts21_artifact.tgz


C. Nemitz, S. Caspin, J. Anderson, and B. Ward 3:3

gcc
Python 2.7
Python3
matplotlib, numpy, and pandas Python libraries

Our overhead experiment assumes the use of an x86 platform, and we tested it on a two-socket,
18-cores-per-socket platform, with two Intel Xeon E5-2699 v3 CPUs @ 2.30 GHz, 128 GB of RAM,
and three levels of cache: per-core 32 KB L1 data and instruction caches, 256 KB L2 caches shared
by pairs of cores, and 46,080 KB L3 caches shared by all cores on the same socket. We expect
similar results from similarly-sized platforms. To reproduce our results, ensure that while the
experiments are running, no other work is done on the machine. Additionally, frequency scaling
should be turned off.

4.2 Schedulability Evaluation
The schedulability experiment was run on the 36-core platform described above, but the results
do not depend on the platform. This portion of our evaluation is based on the artifact [2] that
corresponds to the original presentation of the schedulability framework [3]. As such, we require
the same system setup, including:

Python 2.7
Python NumPy Library
Python SciPy Library
SWIG 3.0
GNU C++ compiler (G++)
GNU Multiple Precision Arithmetic Library (libgmp)

For the linear programming solver, we used GNU Linear Programming Kit (GLPK) [1].

5 License

The artifact is available under license the Creative Commons Attribution 4.0 International license
(CC-BY 4.0). For details, see https://creativecommons.org/licenses/by/4.0/.

6 MD5 sum of the artifact

640c645393830f61d89f183bfa328079

7 Size of the artifact

2.2 MB

References
1 GLPK (GNU Linear Programming Kit). https:

//www.gnu.org/software/glpk/.
2 A. Biondi and B. Brandenburg. Artifact

for Lightweight real-time synchronization under
P-EDF on symmetric and asymmetric multi-
processors. http://people.mpi-sws.org/~bbb/
papers/ae/ecrts16/pedf-synch.html, 2016.

3 A. Biondi and B. Brandenburg. Lightweight real-
time synchronization under P-EDF on symmetric
and asymmetric multiprocessors. In Proceedings

of the 28th Euromicro Conference on Real-Time
Systems, 2016.

4 B. Brandenburg. Scheduling and Locking in Mul-
tiprocessor Real-Time Operating Systems. PhD
thesis, University of North Carolina, Chapel Hill,
NC, 2011.

5 C. Nemitz, T. Amert, and J. Anderson. Using
Lock Servers to Scale Real-Time Locking Proto-
cols: Chasing Ever-Increasing Core Counts (Arti-
fact). Dagstuhl Artifacts Series, 4(2):2:1–2:3, 2018.
doi:10.4230/DARTS.4.2.2.

DARTS

https://creativecommons.org/licenses/by/4.0/
https://www.gnu.org/software/glpk/
https://www.gnu.org/software/glpk/
http://people.mpi-sws.org/~bbb/papers/ae/ecrts16/pedf-synch.html
http://people.mpi-sws.org/~bbb/papers/ae/ecrts16/pedf-synch.html
https://doi.org/10.4230/DARTS.4.2.2

	1 Scope
	2 Content
	2.1 Overhead Evaluation
	2.2 Schedulability Evaluation

	3 Getting the artifact
	4 Tested platforms
	4.1 Overhead Evaluation
	4.2 Schedulability Evaluation

	5 License
	6 MD5 sum of the artifact
	7 Size of the artifact

