23 research outputs found
Multi-Messenger Gravitational Wave Searches with Pulsar Timing Arrays: Application to 3C66B Using the NANOGrav 11-year Data Set
When galaxies merge, the supermassive black holes in their centers may form
binaries and, during the process of merger, emit low-frequency gravitational
radiation in the process. In this paper we consider the galaxy 3C66B, which was
used as the target of the first multi-messenger search for gravitational waves.
Due to the observed periodicities present in the photometric and astrometric
data of the source of the source, it has been theorized to contain a
supermassive black hole binary. Its apparent 1.05-year orbital period would
place the gravitational wave emission directly in the pulsar timing band. Since
the first pulsar timing array study of 3C66B, revised models of the source have
been published, and timing array sensitivities and techniques have improved
dramatically. With these advances, we further constrain the chirp mass of the
potential supermassive black hole binary in 3C66B to less than using data from the NANOGrav 11-year data set. This
upper limit provides a factor of 1.6 improvement over previous limits, and a
factor of 4.3 over the first search done. Nevertheless, the most recent orbital
model for the source is still consistent with our limit from pulsar timing
array data. In addition, we are able to quantify the improvement made by the
inclusion of source properties gleaned from electromagnetic data to `blind'
pulsar timing array searches. With these methods, it is apparent that it is not
necessary to obtain exact a priori knowledge of the period of a binary to gain
meaningful astrophysical inferences.Comment: 14 pages, 6 figures. Accepted by Ap
The NANOGrav 11-year Data Set: High-precision Timing of 45 Millisecond Pulsars
We present high-precision timing data over time spans of up to 11 years for 45 millisecond pulsars observed as part of the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) project, aimed at detecting and characterizing low-frequency gravitational waves. The pulsars were observed with the Arecibo Observatory and/or the Green Bank Telescope at frequencies ranging from 327 MHz to 2.3 GHz. Most pulsars were observed with approximately monthly cadence, and six high-timing-precision pulsars were observed weekly. All were observed at widely separated frequencies at each observing epoch in order to fit for time-variable dispersion delays. We describe our methods for data processing, time-of-arrival (TOA) calculation, and the implementation of a new, automated method for removing outlier TOAs. We fit a timing model for each pulsar that includes spin, astrometric, and (for binary pulsars) orbital parameters; time-variable dispersion delays; and parameters that quantify pulse-profile evolution with frequency. The timing solutions provide three new parallax measurements, two new Shapiro delay measurements, and two new measurements of significant orbital-period variations. We fit models that characterize sources of noise for each pulsar. We find that 11 pulsars show significant red noise, with generally smaller spectral indices than typically measured for non-recycled pulsars, possibly suggesting a different origin. A companion paper uses these data to constrain the strength of the gravitational-wave background
Multimessenger Gravitational-wave Searches with Pulsar Timing Arrays:Application to 3C 66B Using the NANOGrav 11-year Data Set
When galaxies merge, the supermassive black holes in their centers may form binaries and emit low-frequency gravitational radiation in the process. In this paper, we consider the galaxy 3C 66B, which was used as the target of the first multimessenger search for gravitational waves. Due to the observed periodicities present in the photometric and astrometric data of the source, it has been theorized to contain a supermassive black hole binary. Its apparent 1.05-year orbital period would place the gravitational-wave emission directly in the pulsar timing band. Since the first pulsar timing array study of 3C 66B, revised models of the source have been published, and timing array sensitivities and techniques have improved dramatically. With these advances, we further constrain the chirp mass of the potential supermassive black hole binary in 3C 66B to less than (1.65 ± 0.02) Ă 109 M oË using data from the NANOGrav 11-year data set. This upper limit provides a factor of 1.6 improvement over previous limits and a factor of 4.3 over the first search done. Nevertheless, the most recent orbital model for the source is still consistent with our limit from pulsar timing array data. In addition, we are able to quantify the improvement made by the inclusion of source properties gleaned from electromagnetic data over "blind"pulsar timing array searches. With these methods, it is apparent that it is not necessary to obtain exact a priori knowledge of the period of a binary to gain meaningful astrophysical inferences
The NANOGrav Nine-year Data Set:Observations, Arrival Time Measurements, and Analysis of 37 Millisecond Pulsars
We present high-precision timing observations spanning up to nine years for 37 millisecond pulsars monitored with the Green Bank and Arecibo radio telescopes as part of the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) project. We describe the observational and instrumental setups used to collect the data, and methodology applied for calculating pulse times of arrival; these include novel methods for measuring instrumental offsets and characterizing low signal-to-noise ratio timing results. The time of arrival data are fit to a physical timing model for each source, including terms that characterize time-variable dispersion measure and frequency-dependent pulse shape evolution. In conjunction with the timing model fit, we have performed a Bayesian analysis of a parameterized timing noise model for each source, and detect evidence for excess low-frequency, or "red," timing noise in 10 of the pulsars. For 5 of these cases this is likely due to interstellar medium propagation effects rather than intrisic spin variations. Subsequent papers in this series will present further analysis of this data set aimed at detecting or limiting the presence of nanohertz-frequency gravitational wave signals
The NANOGrav 11-year Data Set: High-precision Timing of 45 Millisecond Pulsars
We present high-precision timing data over time spans of up to 11 years for 45 millisecond pulsars observed as part of the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) project, aimed at detecting and characterizing low-frequency gravitational waves. The pulsars were observed with the Arecibo Observatory and/or the Green Bank Telescope at frequencies ranging from 327 MHz to 2.3 GHz. Most pulsars were observed with approximately monthly cadence, and six high-timing-precision pulsars were observed weekly. All were observed at widely separated frequencies at each observing epoch in order to fit for time-variable dispersion delays. We describe our methods for data processing, time-of-arrival (TOA) calculation, and the implementation of a new, automated method for removing outlier TOAs. We fit a timing model for each pulsar that includes spin, astrometric, and (for binary pulsars) orbital parameters; time-variable dispersion delays; and parameters that quantify pulse-profile evolution with frequency. The timing solutions provide three new parallax measurements, two new Shapiro delay measurements, and two new measurements of significant orbital-period variations. We fit models that characterize sources of noise for each pulsar. We find that 11 pulsars show significant red noise, with generally smaller spectral indices than typically measured for non-recycled pulsars, possibly suggesting a different origin. A companion paper uses these data to constrain the strength of the gravitational-wave background
Comparing Recent Pulsar Timing Array Results on the Nanohertz Stochastic Gravitational-wave Background
The Australian, Chinese, European, Indian, and North American pulsar timing array (PTA) collaborations recently reported, at varying levels, evidence for the presence of a nanohertz gravitational-wave background (GWB). Given that each PTA made different choices in modeling their data, we perform a comparison of the GWB and individual pulsar noise parameters across the results reported from the PTAs that constitute the International Pulsar Timing Array (IPTA). We show that despite making different modeling choices, there is no significant difference in the GWB parameters that are measured by the different PTAs, agreeing within 1Ï. The pulsar noise parameters are also consistent between different PTAs for the majority of the pulsars included in these analyses. We bridge the differences in modeling choices by adopting a standardized noise model for all pulsars and PTAs, finding that under this model there is a reduction in the tension in the pulsar noise parameters. As part of this reanalysis, we "extended" each PTA's data set by adding extra pulsars that were not timed by that PTA. Under these extensions, we find better constraints on the GWB amplitude and a higher signal-to-noise ratio for the HellingsâDowns correlations. These extensions serve as a prelude to the benefits offered by a full combination of data across all pulsars in the IPTA, i.e., the IPTA's Data Release 3, which will involve not just adding in additional pulsars but also including data from all three PTAs where any given pulsar is timed by more than a single PTA
Comparing recent PTA results on the nanohertz stochastic gravitational wave background
The Australian, Chinese, European, Indian, and North American pulsar timing
array (PTA) collaborations recently reported, at varying levels, evidence for
the presence of a nanohertz gravitational wave background (GWB). Given that
each PTA made different choices in modeling their data, we perform a comparison
of the GWB and individual pulsar noise parameters across the results reported
from the PTAs that constitute the International Pulsar Timing Array (IPTA). We
show that despite making different modeling choices, there is no significant
difference in the GWB parameters that are measured by the different PTAs,
agreeing within . The pulsar noise parameters are also consistent
between different PTAs for the majority of the pulsars included in these
analyses. We bridge the differences in modeling choices by adopting a
standardized noise model for all pulsars and PTAs, finding that under this
model there is a reduction in the tension in the pulsar noise parameters. As
part of this reanalysis, we "extended" each PTA's data set by adding extra
pulsars that were not timed by that PTA. Under these extensions, we find better
constraints on the GWB amplitude and a higher signal-to-noise ratio for the
Hellings and Downs correlations. These extensions serve as a prelude to the
benefits offered by a full combination of data across all pulsars in the IPTA,
i.e., the IPTA's Data Release 3, which will involve not just adding in
additional pulsars, but also including data from all three PTAs where any given
pulsar is timed by more than as single PTA.Comment: 21 pages, 9 figures, submitted to Ap
The NANOGrav 12.5 year data set: Monitoring interstellar scattering delays
We extract interstellar scintillation parameters for pulsars observed by the NANOGrav radio pulsar timing program. Dynamic spectra for the observing epochs of each pulsar were used to obtain estimates of scintillation timescales, scintillation bandwidths, and the corresponding scattering delays using a stretching algorithm to account for frequency-dependent scaling. We were able to measure scintillation bandwidths for 28 pulsars at 1500 MHz and 15 pulsars at 820 MHz. We examine scaling behavior for 17 pulsars and find power-law indices ranging from â0.7 to â3.6, though these may be biased shallow due to insufficient frequency resolution at lower frequencies. We were also able to measure scintillation timescales for six pulsars at 1500 MHz and seven pulsars at 820 MHz. There is fair agreement between our scattering delay measurements and electron-density model predictions for most pulsars. We derive interstellar scattering-based transverse velocities assuming isotropic scattering and a scattering screen halfway between the pulsar and Earth. We also estimate the location of the scattering screens assuming proper motion and interstellar scattering-derived transverse velocities are equal. We find no correlations between variations in scattering delay and either variations in dispersion measure or flux density. For most pulsars for which scattering delays are measurable, we find that time-of-arrival uncertainties for a given epoch are larger than our scattering delay measurements, indicating that variable scattering delays are currently subdominant in our overall noise budget but are important for achieving precisions of tens of nanoseconds or less
Astrophysics Milestones for Pulsar Timing Array Gravitational-wave Detection
International audienceThe NANOGrav Collaboration reported strong Bayesian evidence for a common-spectrum stochastic process in its 12.5 yr pulsar timing array data set, with median characteristic strain amplitude at periods of a year of . However, evidence for the quadrupolar Hellings & Downs interpulsar correlations, which are characteristic of gravitational-wave signals, was not yet significant. We emulate and extend the NANOGrav data set, injecting a wide range of stochastic gravitational-wave background (GWB) signals that encompass a variety of amplitudes and spectral shapes, and quantify three key milestones. (I) Given the amplitude measured in the 12.5 yr analysis and assuming this signal is a GWB, we expect to accumulate robust evidence of an interpulsar-correlated GWB signal with 15â17 yr of data, i.e., an additional 2â5 yr from the 12.5 yr data set. (II) At the initial detection, we expect a fractional uncertainty of 40% on the power-law strain spectrum slope, which is sufficient to distinguish a GWB of supermassive black hole binary origin from some models predicting more exotic origins. (III) Similarly, the measured GWB amplitude will have an uncertainty of 44% upon initial detection, allowing us to arbitrate between some population models of supermassive black hole binaries. In addition, power-law models are distinguishable from those having low-frequency spectral turnovers once 20 yr of data are reached. Even though our study is based on the NANOGrav data, we also derive relations that allow for a generalization to other pulsar timing array data sets. Most notably, by combining the data of individual arrays into the International Pulsar Timing Array, all of these milestones can be reached significantly earlier