16 research outputs found

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Defining Terms Used for Animals Working in Support Roles for People with Support Needs

    Get PDF
    The nomenclature used to describe animals working in roles supporting people can be confusing. The same term may be used to describe different roles, or two terms may mean the same thing. This confusion is evident among researchers, practitioners, and end users. Because certain animal roles are provided with legal protections and/or government-funding support in some jurisdictions, it is necessary to clearly define the existing terms to avoid confusion. The aim of this paper is to provide operationalized definitions for nine terms, which would be useful in many world regions: “assistance animal”, “companion animal”, “educational/school support animal”, “emotional support animal”, “facility animal”, “service animal”, “skilled companion animal”, “therapy animal”, and “visiting/visitation animal”. At the International Society for Anthrozoology (ISAZ) conferences in 2018 and 2020, over 100 delegates participated in workshops to define these terms, many of whom co-authored this paper. Through an iterative process, we have defined the nine terms and explained how they differ from each other. We recommend phasing out two terms (i.e., “skilled companion animal” and “service animal”) due to overlap with other terms that could potentially exacerbate confusion. The implications for several regions of the world are discussed

    The DNA sequence and comparative analysis of human chromosome 5

    No full text
    Chromosome 5 is one of the largest human chromosomes yet has one of the lowest gene densities. This is partially explained by numerous gene-poor regions that display a remarkable degree of noncoding and syntenic conservation with non-mammalian vertebrates, suggesting they are functionally constrained. In total, we compiled 177.7 million base pairs of highly accurate finished sequence containing 923 manually curated protein-encoding genes including the protocadherin and interleukin gene families and the first complete versions of each of the large chromosome 5 specific internal duplications. These duplications are very recent evolutionary events and play a likely mechanistic role, since deletions of these regions are the cause of debilitating disorders including spinal muscular atrophy (SMA)

    The DNA sequence and biology of human chromosome 19

    No full text

    Initial sequencing and analysis of the human genome

    No full text
    International audienc

    Growth Outcomes of Preterm Infants Exposed to Different Oxygen Saturation Target Ranges from Birth

    No full text

    Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs

    No full text
    Most psychiatric disorders are moderately to highly heritable. The degree to which genetic variation is unique to individual disorders or shared across disorders is unclear. To examine shared genetic etiology, we use genome-wide genotype data from the Psychiatric Genomics Consortium (PGC) for cases and controls in schizophrenia, bipolar disorder, major depressive disorder, autism spectrum disorders (ASD) and attention-deficit/hyperactivity disorder (ADHD). We apply univariate and bivariate methods for the estimation of genetic variation within and covariation between disorders. SNPs explained 17-29% of the variance in liability. The genetic correlation calculated using common SNPs was high between schizophrenia and bipolar disorder (0.68 ± 0.04 s.c.), moderate between schizophrenia and major depressive disorder (0.43 ± 0.06 s.e.), bipolar disorder and major depressive disorder (0.47 ± 0.06 s.e.), and ADHD and major depressive disorder (0.32 ± 0.07 s.e.), low between schizophrenia and ASD (0.16 ± 0.06 s.e.) and non-significant for other pairs of disorders as well as between psychiatric disorders and the negative control of Crohn's disease. This empirical evidence of shared genetic etiology for psychiatric disorders can inform nosology and encourages the investigation of common pathophysiologies for related disorders
    corecore