15 research outputs found
Nanomanipulation and characterization of individual nano-objects for in situ experiments of electron microscopy
Orientador: Daniel Mario UgarteTese (doutorado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb WataghinResumo: Há grandes expectativas de que, no futuro, componentes de alta tecnologia sejam baseados em novas e inesperadas propriedades físicas e químicas de objetos nanométricos. Muitas aplicações exigem que nano-objetos sejam posicionados precisamente em áreas bem definidas de um componente. Entretanto, os métodos estabelecidos de manipulação física usados na escala macroscópica não são aplicáveis na escala nanométrica. Muitas questões continuam em aberto e os avan»cos no estudo de nanossistemas são lentos. Muitos experimentos tem explorado a manipulação física usando microscopias de força atômica (AFM) e de tunelamento (STM), mas, nestes métodos, manipulação e observação não podem ser realizadas simultaneamente. Os microscópios eletrônicos de varredura (SEM) e de transmissão (TEM) são equipamentos essenciais no estudo de nano-objetos devido µa sua alta resolução e µa possibilidade de observar os movimentos realizados in situ em tempo real. Unindo esta técnica ao uso de nanomanipuladores, obtemos uma ferramenta poderosa para manipular e caracterizar nano-objetos. Existem diversos nanomanipuladores comerciais que operam em SEMs. Entretanto, o custo destes instrumentos é elevado, e os mesmos ficam restritos a grandes centros de pesquisa. Nesta tese, descrevemos o desenho, construção e aplicação de nanomanipuladores com uma ou duas pontas de prova, cujos sistemas são baseados em mecânica simples e materiais de baixo custo. Estes sistemas operam dentro de um SEM equipado com um canhão por emissão de campo (FEG-SEM, JSM-6330F, resolução nominal 1.5 nm a 25 kV). Os movimentos grosseiros são baseados em um sistema elásticos (um eixo de movimento) e em uma modificação inovadora deste sistema. Em tal modificação, dois sistemas elásticos são acoplados, o que gera movimentos em dois eixos. Quanto aos movimentos finos, um conjunto de elementos piezoelétricos é responsável pelo deslocamento preciso em três eixos independentes de cada ponta de prova. O porta-amostra possui um grande deslocamento (15 mm), o que nos permite trabalhar com várias amostras em um mesmo experimento. Os instrumentos desenvolvidos permitem uma grande variedade de experimentos de nanomanipulação e nanocaracterização, incluindo a medicão de correntes e a aplicação de voltagens. Os sistemas foram usados em diversos experimentos, tais como: a) fabricação de pontas de AFM de alta razão de aspecto baseadas em nanotubos de carbono multi-camadas; b) coletar, mover e posicionar nanofios semicondutores (100 - 300 nm de diâmetro, microns de comprimento) em contatos elétricos pré-definidos ou em áreas específicas de uma amostra; c) fabricação e caracterização elétrica de dispositivo eletrônico baseado em nanofios semi-condutores; d) caracterização das propriedades mecânicas de nano-objetos unidimensionais, como nanotubos de carbono e nanofios; etc. Finalmente, nossos resultados de manipulação demonstram que existem muitas oportunidades para a aplicação de manipulação física no método "bottom-up"em nanotecnologiaAbstract: It is expected that, in the future, high-technology devices should be based on new and unexpected physical and chemical properties of nanometric objects. Many applications require nano-objects to be selectively positioned at well-defined positions of a device. However, the well-established methods of physical manipulation used in the macroscopic scale are not applicable in nanoscale. Here, there are lots of open questions and the progress is still rather slow. Several experiments have exploited physical manipulation using atomic force microscopy (AFM) and scanning tunnelling microscopy (STM), but, in these techniques, manipulation and observation can not be performed simultaneously. The scanning (SEM) and transmission (TEM) electron microscopes are essential equipments for studying nano-objects due to their high resolution and to the possibility of observing performed movements in real time. Those techniques, together with the use of nanomanipulators, are powerful tools to manipulate and characterize nano-objects. There are several commercial nanomanipulators for SEMs. However, the price of these instruments is reasonably high, and they become restricted to a few research groups. In this work, we report the development and applications of home-made nanomanipulators (with one or two probe tips) whose systems are based on simple mechanics and on low-cost materials. They operate inside a FEG-SEM (JSM-6330F, 1.5 nm nominal resolution at 25 kV). The coarse movements rely on parallel guiding spring based mechanics (one axis of movement) and on two overlapped parallel guiding spring based mechanics (two axes of movement). The precise movements are due to an ensemble of piezoelectric elements that has three independent axes of movement for each probe tip. The sample support has a large range (15 mm) on one axis, which allows working with several samples during the same experiment. The instruments are suitable for a wide spectrum of nanomanipulation and nanocharacterization experiments, including measuring currents and applying voltages. The systems have been used for a variety of applications, such as: a) fabricating high aspect-ratio AFM tips based on multi-walled carbon nanotubes; b) collecting, moving, and positioning semiconductor nanowires (100 - 300 nm in diameter, microns in length) on predefined electrical contacts or special sample sites; c) fabrication and electrical characterization of an electronic device based on semiconductor nanowires; d) characterization of mechanical properties of one-dimensional nano-objects, as carbon nanotubes and nanowires; etc. Brie°y, our manipulation results demonstrate that there are plenty of opportunities for applications of physical manipulation in the bottom-up approach to nanotechnologyDoutoradoFísica da Matéria CondensadaDoutor em Ciência
Probing the structure of single-walled carbon nanotubes by resonant Raman scattering
International audienceWe review the main information that we have obtained from combined Raman spectroscopy and electron diffraction experiments on individual free-standing single-walled carbon nanotubes. This information concerns: the radial breathing mode vs diameter relationship; the dependence of the frequency and lineshape of the G-modes in semiconducting and metallic tubes; the evaluation of the optical transition energies for individual free-standing SWNTs. From these data, we can define Raman criteria allowing the indexing of carbon nanotubes from their Raman features only. We show the efficiency of this approach to assign the (n,m) indices of individual chiral and achiral single-walled carbon nanotubes. These criteria are also applied to identify tubes grown on a substrate from a single wavelength Raman experiments. These results obtained on index-identified individual nanotubes are compared with theoretical prediction
Indexing of individual single-walled carbon nanotubes from Raman spectroscopy
From combined Raman spectroscopy and electron diffraction studies on several freestanding single-walled carbon nanotubes (SWNTs), we define Raman criteria which correlate the main features of the Raman spectrum (radial breathing mode and G modes) and the optical transition energies with the structure of the SWNT under investigation. On this basis, we discuss the possibilities to determine the (n,m) indices of an individual SWNT from a single wavelength Raman experiment. We show the efficiency of this approach in assigning the (n,m) structure of different individual nanotubes including all types of achiral SWNTs. Finally, the limits and the accuracy of the method are discussed
Raman spectroscopy as a tool to study the doping of graphene
International audienceAbstract In this communication, we will illustrate how Raman spectroscopy can be used to study the doping of graphene. We will first report data recorded by in situ Raman experiments on single-layer (SLG) graphene during exposure to rubidium vapor. By this way, we have been able to follow continuously the changes of the G and 2D bands features over a broad doping range (up to about 1014 electrons/cm2). Previous theoretical predictions have shown that the evolution of the G-mode in SLG results from the competition between adiabatic and non-adiabatic effects. We emphasize that a possible substrate pinning effect, which inhibits the charge-induced lattice expansion of graphene layer, can strongly influence the G band position [1]. In the second part, we will show that the charge carrier density of graphene exfoliated on a SiO2/Si substrate can be finely and reversibly tuned between electron and hole doping with visible photons. This photo-induced doping happens under moderate laser power conditions but is significantly affected by the substrate cleaning method. In particular, it requires hydrophilic substrates and vanishes for suspended graphene. These findings also suggest that Raman spectroscopy is not always as non- invasive as generally assumed [2]. References [1] R. Parret, M. Paillet, J.-R. Huntzinger, D. Nakabayashi, T. Michel, A. Tiberj, J.-L. Sauvajol, A.-A. Zahab, ACS Nano, 7 (2013) 165. [2] A. Tiberj, M. Rubio-Roy, M. Paillet, J.-R. Huntzinger, P. Landois, M. Mikolasek, S. Contreras, J.-L. S!auvajol, E. Dujardin, A.-A. Zahab, Scientific Reports, 3 (2013) 2355
<i>In Situ</i> Raman Probing of Graphene over a Broad Doping Range upon Rubidium Vapor Exposure
We report <i>in situ</i> Raman scattering experiments on single-layer graphene (SLG) and Bernal bilayer graphene (BLG) during exposure to rubidium vapor. The G- and 2D-band evolutions with doping time are presented and analyzed. On SLG, the extended doping range scanned (up to about 10<sup>14</sup> electrons/cm<sup>2</sup>) allows the observation of three regimes in the evolution of the G-band frequency: a continuous upshift followed by a plateau and a downshift. Overall the measured evolution is interpreted as the signature of the competition between dynamic and adiabatic effects upon n-doping. Comparison of the obtained results with theoretical predictions indicates however that a substrate pinning effect occurs and inhibits charge-induced lattice expansion of SLG. At low doping, a direct link between electrostatic gating and Rb doping results is presented. For BLG, the added electrons are shown to be first confined in the top layer, but the system evolves with time toward a more symmetric repartition of the added electrons in both layers. The results obtained on BLG also confirm that the slope of the phonon dispersion close to the K point tends to be slightly reduced at low doping but suggest the occurrence of an unexpected increase of the phonon dispersion slope at higher electron concentration