95 research outputs found

    Improvement of COD and TOC reactive dyes in textile wastewater by coagulation chemical material

    Get PDF
    This study was designed to investigate the removal of reactive dyes, Samofix Red V-RBL and Samofix Green V-G from wastewater using a two step Al (III) coagulation/activated carbon adsorption method.The effects of pH and coagulant dosage as well as the effects of contact time and a powdered activated carbon dosage on dye removal were studied. The process was optimized with reasonable consumption of coagulant and quantity of obtained sludge. Coagulation as a main treatment process followed by adsorption achieved almost total elimination of both dyes from wastewater with significant reduction (90%) of chemical oxygen demand (COD), total organic carbon (TOC) and absorbable organic halide (AOX). Besides high efficiency of dye removal, the combined treatment process offers many advantages for potential application such as coagulant savings, minimal amount of sludge formationand also an economic feasibility since it does not require high costs for chemicals and equipments

    One bath method dyeing of polyester/cotton blend fabric with sulphatoethylsulphonyl disperse/reactive dyes treatment by chitin biopolymer

    Get PDF
    In this research, the process of dyeing polyester/cotton fabrics using disperse/reactive dyestuffs in one method dyeing processes was investigated. In the order to improve the adhesion of chitin to the surface of polyester/cotton fibers, pre-treatment in NaOH solutions was performed. The colour and rubbing fastness properties of the chitin-deposited polyester/cotton fabrics were assessed. The colour difference between the dyed blank samples and samples dyed in NaOH and/or different viscosity chitin treatment was estimated. The data obtained shows that it is possible to dye polyester/cotton fabrics finished by chitin with only one disperses/reactive dyestuff. The dyed samples showed good rubbing andwashing colour fastness properties within the range of colour change. The colour strength of the dyed samples increased with the increased deposition of chitin on the fabric

    Novel dynamic modelling of parallel HVAC/HVDC

    Get PDF
    Belgium Herbarium image of Meise Botanic Garden

    Novel dynamic modelling of parallel HVAC/HVDC

    Get PDF

    Novel dynamic modelling of parallel HVAC/HVDC

    Get PDF

    Expanding the clinical phenotype of IARS2-related mitochondrial disease.

    Get PDF
    BACKGROUND: IARS2 encodes a mitochondrial isoleucyl-tRNA synthetase, a highly conserved nuclear-encoded enzyme required for the charging of tRNAs with their cognate amino acid for translation. Recently, pathogenic IARS2 variants have been identified in a number of patients presenting broad clinical phenotypes with autosomal recessive inheritance. These phenotypes range from Leigh and West syndrome to a new syndrome abbreviated CAGSSS that is characterised by cataracts, growth hormone deficiency, sensory neuropathy, sensorineural hearing loss, and skeletal dysplasia, as well as cataract with no additional anomalies. METHODS: Genomic DNA from Iranian probands from two families with consanguineous parental background and overlapping CAGSSS features were subjected to exome sequencing and bioinformatics analysis. RESULTS: Exome sequencing and data analysis revealed a novel homozygous missense variant (c.2625C > T, p.Pro909Ser, NM_018060.3) within a 14.3 Mb run of homozygosity in proband 1 and a novel homozygous missense variant (c.2282A > G, p.His761Arg) residing in an ~ 8 Mb region of homozygosity in a proband of the second family. Patient-derived fibroblasts from proband 1 showed normal respiratory chain enzyme activity, as well as unchanged oxidative phosphorylation protein subunits and IARS2 levels. Homology modelling of the known and novel amino acid residue substitutions in IARS2 provided insight into the possible consequence of these variants on function and structure of the protein. CONCLUSIONS: This study further expands the phenotypic spectrum of IARS2 pathogenic variants to include two patients (patients 2 and 3) with cataract and skeletal dysplasia and no other features of CAGSSS to the possible presentation of the defects in IARS2. Additionally, this study suggests that adult patients with CAGSSS may manifest central adrenal insufficiency and type II esophageal achalasia and proposes that a variable sensorineural hearing loss onset, proportionate short stature, polyneuropathy, and mild dysmorphic features are possible, as seen in patient 1. Our findings support that even though biallelic IARS2 pathogenic variants can result in a distinctive, clinically recognisable phenotype in humans, it can also show a wide range of clinical presentation from severe pediatric neurological disorders of Leigh and West syndrome to both non-syndromic cataract and cataract accompanied by skeletal dysplasia

    Bi-allelic <em>ACBD6</em> variants lead to a neurodevelopmental syndrome with progressive and complex movement disorders

    Get PDF
    \ua9 The Author(s) 2023. Published by Oxford University Press on behalf of the Guarantors of Brain. The acyl-CoA-binding domain-containing protein 6 (ACBD6) is ubiquitously expressed, plays a role in the acylation of lipids and proteins and regulates the N-myristoylation of proteins via N-myristoyltransferase enzymes (NMTs). However, its precise function in cells is still unclear, as is the consequence of ACBD6 defects on human pathophysiology. Using exome sequencing and extensive international data sharing efforts, we identified 45 affected individuals from 28 unrelated families (consanguinity 93%) with bi-allelic pathogenic, predominantly loss-of-function (18/20) variants in ACBD6. We generated zebrafish and Xenopus tropicalis acbd6 knockouts by CRISPR/Cas9 and characterized the role of ACBD6 on protein N-myristoylation with myristic acid alkyne (YnMyr) chemical proteomics in the model organisms and human cells, with the latter also being subjected further to ACBD6 peroxisomal localization studies. The affected individuals (23 males and 22 females), aged 1-50 years, typically present with a complex and progressive disease involving moderate-to-severe global developmental delay/intellectual disability (100%) with significant expressive language impairment (98%), movement disorders (97%), facial dysmorphism (95%) and mild cerebellar ataxia (85%) associated with gait impairment (94%), limb spasticity/hypertonia (76%), oculomotor (71%) and behavioural abnormalities (65%), overweight (59%), microcephaly (39%) and epilepsy (33%). The most conspicuous and common movement disorder was dystonia (94%), frequently leading to early-onset progressive postural deformities (97%), limb dystonia (55%) and cervical dystonia (31%). A jerky tremor in the upper limbs (63%), a mild head tremor (59%), parkinsonism/hypokinesia developing with advancing age (32%) and simple motor and vocal tics were among other frequent movement disorders. Midline brain malformations including corpus callosum abnormalities (70%), hypoplasia/agenesis of the anterior commissure (66%), short midbrain and small inferior cerebellar vermis (38% each) as well as hypertrophy of the clava (24%) were common neuroimaging findings. Acbd6-deficient zebrafish and Xenopus models effectively recapitulated many clinical phenotypes reported in patients including movement disorders, progressive neuromotor impairment, seizures, microcephaly, craniofacial dysmorphism and midbrain defects accompanied by developmental delay with increased mortality over time. Unlike ACBD5, ACBD6 did not show a peroxisomal localization and ACBD6-deficiency was not associated with altered peroxisomal parameters in patient fibroblasts. Significant differences in YnMyr-labelling were observed for 68 co- and 18 post-translationally N-myristoylated proteins in patient-derived fibroblasts. N-myristoylation was similarly affected in acbd6-deficient zebrafish and X. tropicalis models, including Fus, Marcks and Chchd-related proteins implicated in neurological diseases. The present study provides evidence that bi-allelic pathogenic variants in ACBD6 lead to a distinct neurodevelopmental syndrome accompanied by complex and progressive cognitive and movement disorders
    • …
    corecore