1,227 research outputs found

    General anesthesia reduces complexity and temporal asymmetry of the informational structures derived from neural recordings in Drosophila

    Full text link
    We apply techniques from the field of computational mechanics to evaluate the statistical complexity of neural recording data from fruit flies. First, we connect statistical complexity to the flies' level of conscious arousal, which is manipulated by general anesthesia (isoflurane). We show that the complexity of even single channel time series data decreases under anesthesia. The observed difference in complexity between the two states of conscious arousal increases as higher orders of temporal correlations are taken into account. We then go on to show that, in addition to reducing complexity, anesthesia also modulates the informational structure between the forward- and reverse-time neural signals. Specifically, using three distinct notions of temporal asymmetry we show that anesthesia reduces temporal asymmetry on information-theoretic and information-geometric grounds. In contrast to prior work, our results show that: (1) Complexity differences can emerge at very short timescales and across broad regions of the fly brain, thus heralding the macroscopic state of anesthesia in a previously unforeseen manner, and (2) that general anesthesia also modulates the temporal asymmetry of neural signals. Together, our results demonstrate that anesthetized brains become both less structured and more reversible.Comment: 14 pages, 6 figures. Comments welcome; Added time-reversal analysis, updated discussion, new figures (Fig. 5 & Fig. 6) and Tables (Tab. 1

    Improved Ultraviolet and Infrared Oscillator Strengths for OH+

    Get PDF
    Molecular ions are key reaction intermediates in the interstellar medium. OH+ plays a central role in the formation of more complex chemical species and for estimating the cosmic ray ionization rate in astrophysical environments. Here, we use a recent analysis of a laboratory spectrum in conjunction with ab initio methods to calculate infrared and ultraviolet oscillator strengths. These new oscillator strengths include branch dependent intensity corrections, arising from the Herman–Wallis effect, that have not been included before. We estimate 10% total uncertainty in the UV and 6% total uncertainty in the IR for the oscillator strengths

    Large-Scale Distributed Bayesian Matrix Factorization using Stochastic Gradient MCMC

    Get PDF
    Despite having various attractive qualities such as high prediction accuracy and the ability to quantify uncertainty and avoid over-fitting, Bayesian Matrix Factorization has not been widely adopted because of the prohibitive cost of inference. In this paper, we propose a scalable distributed Bayesian matrix factorization algorithm using stochastic gradient MCMC. Our algorithm, based on Distributed Stochastic Gradient Langevin Dynamics, can not only match the prediction accuracy of standard MCMC methods like Gibbs sampling, but at the same time is as fast and simple as stochastic gradient descent. In our experiments, we show that our algorithm can achieve the same level of prediction accuracy as Gibbs sampling an order of magnitude faster. We also show that our method reduces the prediction error as fast as distributed stochastic gradient descent, achieving a 4.1% improvement in RMSE for the Netflix dataset and an 1.8% for the Yahoo music dataset

    Coulomb Drag of Edge Excitations in the Chern-Simons Theory of the Fractional Quantum Hall Effect

    Full text link
    Long range Coulomb interaction between the edges of a Hall bar changes the nature of the gapless edge excitations. Instead of independent modes propagating in opposite directions on each edge as expected for a short range interaction one finds elementary excitations living simultaneously on both edges, i.e. composed of correlated density waves propagating in the same direction on opposite edges. We discuss the microscopic features of this Coulomb drag of excitations in the fractional quantum Hall regime within the framework of the bosonic Chern-Simons Landau-Ginzburg theory. The dispersion law of these novel excitations is non linear and depends on the distance between the edges as well as on the current that flows through the sample. The latter dependence indicates a possibility of parametric excitation of these modes. The bulk distributions of the density and currents of the edge excitations differ significantly for short and long range interactions.Comment: 11 pages, REVTEX, 2 uuencoded postscript figure

    WebFR3D—a server for finding, aligning and analyzing recurrent RNA 3D motifs

    Get PDF
    WebFR3D is the on-line version of ‘Find RNA 3D’ (FR3D), a program for annotating atomic-resolution RNA 3D structure files and searching them efficiently to locate and compare RNA 3D structural motifs. WebFR3D provides on-line access to the central features of FR3D, including geometric and symbolic search modes, without need for installing programs or downloading and maintaining 3D structure data locally. In geometric search mode, WebFR3D finds all motifs similar to a user-specified query structure. In symbolic search mode, WebFR3D finds all sets of nucleotides making user-specified interactions. In both modes, users can specify sequence, sequence–continuity, base pairing, base-stacking and other constraints on nucleotides and their interactions. WebFR3D can be used to locate hairpin, internal or junction loops, list all base pairs or other interactions, or find instances of recurrent RNA 3D motifs (such as sarcin–ricin and kink-turn internal loops or T- and GNRA hairpin loops) in any PDB file or across a whole set of 3D structure files. The output page provides facilities for comparing the instances returned by the search by superposition of the 3D structures and the alignment of their sequences annotated with pairwise interactions. WebFR3D is available at http://rna.bgsu.edu/webfr3d

    Stochastic Vehicle Routing with Recourse

    Full text link
    We study the classic Vehicle Routing Problem in the setting of stochastic optimization with recourse. StochVRP is a two-stage optimization problem, where demand is satisfied using two routes: fixed and recourse. The fixed route is computed using only a demand distribution. Then after observing the demand instantiations, a recourse route is computed -- but costs here become more expensive by a factor lambda. We present an O(log^2 n log(n lambda))-approximation algorithm for this stochastic routing problem, under arbitrary distributions. The main idea in this result is relating StochVRP to a special case of submodular orienteering, called knapsack rank-function orienteering. We also give a better approximation ratio for knapsack rank-function orienteering than what follows from prior work. Finally, we provide a Unique Games Conjecture based omega(1) hardness of approximation for StochVRP, even on star-like metrics on which our algorithm achieves a logarithmic approximation.Comment: 20 Pages, 1 figure Revision corrects the statement and proof of Theorem 1.
    • 

    corecore