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Abstract

Molecular ions are key reaction intermediates in the interstellar medium. OH+ plays a central role in the formation
of more complex chemical species and for estimating the cosmic ray ionization rate in astrophysical environments.
Here, we use a recent analysis of a laboratory spectrum in conjunction with ab initio methods to calculate infrared
and ultraviolet oscillator strengths. These new oscillator strengths include branch dependent intensity corrections,
arising from the Herman–Wallis effect, that have not been included before. We estimate 10% total uncertainty in
the UV and 6% total uncertainty in the IR for the oscillator strengths.

Key words: astrochemistry – methods: laboratory: molecular – molecular data

Supporting material: machine-readable tables

1. Introduction

Molecular ions play a critical role in the chemical evolution
of the interstellar medium (van Dishoeck & Black 1986; Le
Petit et al. 2004) and as a means to probe physical conditions
such as temperature and cosmic ray ionization rate (Porras
et al. 2014; Hollenbach et al. 2012). One crucially important
ion is OH+. OH+ is a step in the pathway to the formation of
more complex oxygen and hydrogen containing species such as
H2O

+, H3O
+, HO, and H2O. Because all of this chemistry is

dependent on cosmic ray ionization for initiation, it is critical
that astronomers know cosmic ray ionization rates in various
environments. Comparison of the column density of OH+ to
the total column density of hydrogen can be used to infer the
cosmic ray ionization rate (Hollenbach et al. 2012; Porras et al.
2014; Indriolo et al. 2015). Therefore, detection and quantifica-
tion of OH+ column densities are a powerful tool for
astronomers and astrophysicists.

The first detection of OH+ in the interstellar medium
occurred by Wyrowski et al. (2010). This detection was made
in the submillimeter wave range toward Sagittarius B2(M).
Shortly thereafter, Neufeld et al. (2010), Gerin et al. (2010),
and González-Alfonso et al. (2013) made additional detections
of OH+ in the submillimeter range. The only other spectral
range used to detect OH+ is the UV (Krełowski et al. 2010;
Porras et al. 2014; Bhatt & Cami 2015; Zhao et al. 2015). To
the best of our knowledge, there have been no detections of
OH+ via the intense fundamental vibration near 3.3 μm.

Recent precise laboratory measurements of the fundamental
mode (Markus et al. 2016) have spurred renewed efforts to
improve the available line list of OH+ in support of vibrational
astronomical searches. We have analyzed near-UV spectra of
the A3Π–X3Σ− band system, which were fit with the combined
infrared and submillimeter measurements, to improve the
predicted rest frequencies of the IR and UV transitions (Hodges
& Bernath 2017).

We now present new calculations of oscillator strengths for
the IR and UV lines. Using our improved spectroscopic
constants, we have constructed empirical potential energy
surfaces for the A3Π and X3Σ− states, and we have calculated
the transition and dipole moment functions using ab initio
approaches. We have solved the radial Schödinger equation

and used the wavefunctions and dipole moment function to
determine the oscillator strengths of the IR and UV transitions.
These new values for the oscillator strengths are a marked

improvement over values that have been determined previously
(Gómez-Carrasco et al. 2014; Porras et al. 2014; Zhao et al.
2015) due to the use of an empirical potential energy surface, a
higher level of ab initio theory to calculate the transition dipole
moment function, and the inclusion of the “Herman–Wallis
effect” (branch dependent intensity corrections to the rotational
lines in a band).
With new values for oscillator strengths and transition

frequencies, we can facilitate a better informed search in the IR
and better quantify column densities in the UV. Making
infrared measurements is important because they probe clouds
with OH+ column densities that are between the UV
(∼1012 cm−2) and the submillimeter (∼1015 cm−2). For
example, infrared H3

+ measurements in diffuse clouds (Geballe
& Oka 1996) and toward the Galactic Center (Oka et al. 2005)
result in column densities on the order of ∼1014 cm−2. These
new measurements will provide useful new observations in the
IR and may help to characterize OH+ in new interstellar
environments.

2. Methodology

Empirical potential energy surfaces for the A3Π and X3Σ−

states were calculated by the Rydberg–Klein–Rees method
using the program RKR1 by Le Roy (2017b). The equilibrium
constants were taken from Hodges & Bernath (2017) and
Merer et al. (1975) and are listed in Table 1.
The empirical potential energy surfaces are used as input to

the program LEVEL by Le Roy (2017a). LEVEL also requires
as input a dissociation energy and an energy offset between the
two potential energy surfaces. The dissociation energy
(D0=40270.2(2.9) cm−1) was determined using Active Ther-
mochemical Tables (Ruscic 2015). The shift in energy is varied
until the transition frequencies match Hodges & Bernath
(2017). LEVEL solves the radial Schrödinger equation and can
use a transition dipole moment function to calculate line
strengths.
The ab initio transition dipole moment function is calculated

with the MOLPRO quantum chemistry package (Werner
et al. 2015). Transition moments and dipole moments have
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been calculated at the Multi-reference Configuration Interaction
level of theory. The reference wavefunctions used were
calculated at the state averaged Complete Active Space Self-
consistent Field level of theory, employing the aug-cc-pV6Z
basis sets. The state average included the X3Σ−, 11Δ, 13Π,
11Σ+, 11Π, 15Σ−, and 23Σ− states, all having equal weights.
These states have been used as they have been shown to give
good results when using smaller basis sets and a smaller active
space. The active space included the 2–7 σ-, 1–4 π-, and 1
δ-orbitals. The transition dipole moments were calculated on a
grid of bond lengths with spacing 0.01Å from 0.75 to 2.18Å
(Table 2) as expectation values.

LEVEL does not account for the effect of electron spin, so
we include it in the same manner as Brooke et al. (2016) using
a transformation equation to convert line strengths from Hund’s
“case b” to “case a” (Brown & Howard 1976). The transformed
line strengths are input in the program PGOPHER, which
calculates oscillator strengths and Einstein A coefficients
(Western 2017).

3. Results and Conclusions

Following the procedure delineated in Section 2 and
incorporating the constants reported by Hodges & Bernath
(2017), an updated line list was generated for the A3Π–X3Σ−

rovibronic transition (hereafter A–X) in the ultraviolet and the
rovibrational transitions of the X3Σ− ground state in the
infrared (hereafter X–X). The calculated line list includes all
experimentally observed vibrational levels (A, v=0, 1; X,
v=0, 1, 2, 3, 4) up to J″=30. The line list with line
positions, oscillator strengths, and Einstein A coefficients is
presented in Table 3.

In order to assess the uncertainty on the calculated data sets,
the potential energy surfaces are recalculated with ±1σ of the
values listed in Table 1, and the transition dipole moment
function is shifted by ±0.001 debye, the last significant figure.
The significant figures for the transition dipoles are determined
by adding an additional σ-orbital to the active space and
checking the convergence of the transition dipole moment. The
LEVEL calculations are run again with all combinations of
potential energy surfaces and dipole moment functions. The
differences between the maximum and minimum values of the
line strengths are ratioed with the mean values to generate an
error ratio for each line. The average ratio is then determined
for the A–X transitions and ground state transitions. These
are taken as the numerical precision of the calculations. For the

A–X values, the average precision is 8%; for the ground state
transitions, the average precision is 0.04%. The large
discrepancy between the two data sets is likely due to the
larger relative error on the transition dipole moment for the
A–X data, and the A3Π state has fewer experimentally observed
vibrational levels and is therefore more poorly determined.
These errors constitute just the precision of the calculations.

The accuracy is more difficult to assess. It is worth noting that
the Born–Oppenheimer approximation is less good with
hydrides and the RKR approach relies on this approximation.
To assess the accuracy, the A–X emission spectrum analyzed by
Hodges & Bernath (2017) is compared to the calculated
emission spectrum from PGOPHER. This is accomplished by
checking the ratio of random experimental lines that share the
same upper level to the same ratio from the calculated
spectrum. The average percent error of these comparisons is
10%. This implies that the accuracy of the calculations is on
average 6%, assuming the precision and accuracy uncertainties
can be added in quadrature to generate the total uncertainty.
Generally, the calculated spectrum matches the observed
experimental spectrum very well, which can be seen in
Figure 1. The uncertainties relative to experiment are similar
to those calculated on the OH radical by Brooke et al. (2016).
This calculation was performed in a similar manner to the
calculation on OH+, and it is reasonable that comparable
uncertainties are achieved.
There are ∼20 lines that have either been observed in the UV

or expected to be astronomically relevant (refer to de Almeida
& Singh 1981; Zhao et al. 2015). The oscillator strengths for
the astronomical data are listed in Table 4. The data in Table 4
are presented as wavelengths in standard air using the updated
index of refraction from Birch & Downs (1994) based on the
work by Edlén (1966). The wavelengths are reproduced from
Hodges & Bernath (2017). The most commonly observed
transition is the feature at 3583.756Åand the new oscillator
strength is about a factor of two smaller than the recommended
value from Porras et al. (2014) and used by Zhao et al. (2015).
In fact, all of the oscillator strengths are smaller by about the
same factor. The difference between the two data sets is that the
band strength that Zhao et al. (2015) use (from Merchán
et al. 1991) is larger than our own calculated band strength. Our
ab initio calculation uses a more modern method to determine
the transition dipole moment function and our potential energy
surfaces are constructed with empirical methods, giving us
greater confidence in our calculations. The very first calculation
of oscillator strengths were performed by de Almeida & Singh
(1981) using an empirical potential energy surface calculated
by the Klein–Dunham procedure using the Merer et al. (1975)
data and an experimental lifetime for the A3Π v′=0. This
lifetime was later shown to be too short. They used their
potential energy surfaces to calculate Franck–Condon factors

Table 1
Equilibrium Constants

Constant X3Σ− A3Π

(cm−1) (cm−1)

ωe 3119.2953(5) 2135.0782(54)
ωe xe 83.1390(2) 79.55(1)a

ωe ye 1.02792(3) ...
Be 16.79484(1) 13.81265(23)
αe 0.74903(1) 0.89174(19)
γe 0.010622(3) 0.01730(1)a

Note. Values in parenthesis are one standard deviation uncertainties. X3Σ−

constants are taken as is from Hodges & Bernath (2017) and A3Π values are fit
with data from Hodges & Bernath (2017) using some fixed values from Merer
et al. (1975).
a Fixed at value from Merer et al. (1975).

Table 2
Dipole Moments for the X–X and A–X Transitions as a Function

of Bond Length

Bond Length Dipole Moment X–X Dipole Moment A–X
(Å) (D) (D)

0.75 1.691 −0.516
0.76 1.709 −0.508
0.77 1.727 −0.501

(This table is available in its entirety in machine-readable form.)
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and r-centroids, which were used with the lifetime to calculate
oscillator strengths. The measured lifetime was corrected by the
experimental work of Möhlmann et al. (1978) and matched
later theoretical calculations by Merchán et al. (1991) using

Restricted Active Space Self-Consistent Field calculations to
give reasonable agreement with experiment. These values were
adopted by Porras et al. (2014) to provide a better estimate of
the oscillator strengths and were recently used by Zhao et al.
(2015) to estimate the band strengths of the (0, 0) and (1, 0)
bands. Zhao et al. (2015) used the q00 Franck–Condon factor
calculated by de Almeida & Singh (1981) and the intensity
ratio of two lines from their observations to correct the q10
factor. All of this work is based on potential energy surfaces
calculated with the 1975 spectroscopic data. Our updated
spectroscopic measurements greatly improve the potentials on
which we base our calculations. A recent ab initio calculation
of by Gómez-Carrasco et al. (2014) calculates the dipole
moment transition function with MOLPRO (Werner et al. 2015)
but with many fewer active orbitals. They also rely on ab initio
potential energy surfaces. Therefore, we expect our transition
dipole moment and potential energy surfaces to be better.
Moreover, we are the only calculation that treats the Herman–
Wallis effect, which is strong for astrophysically relevant
hydrides.
To validate our calculation, we calculate the radiative

lifetime of the A3Π v=0 level and compare it to the
experimental value. Our radiative lifetime is 2.86 μs, which is
in reasonable agreement with 2.5±0.3 μs, the empirical value
by Möhlmann et al. (1978). Moreover, the agreement with the
high signal-to-noise laboratory spectrum presented in Hodges
& Bernath (2017) (refer to Figure 1) gives added confidence in
the quality of the calculations. As a test of the quality of our
transition dipole moment function, we compare the intensity
ratio of the rR11(N″=0, J″=1) lines in the (0, 0) and (1, 0)
bands as determined by Zhao et al. (2015) to the ratio of our
calculated oscillator strengths. This ratio is an approximation of
the ratio of the Franck–Condon factors. The ratio of our
calculated oscillator strengths is within 6% error relative to
Zhao et al. (2015), which is within our claimed uncertainty.
This suggests that our transition dipole moment function has an
accurate shape.
Regarding the infrared transitions, there is no reliable

infrared intensity data so the the accuracy cannot be directly
assessed. Conservatively, we can assign the same accuracy of
6% to the f-values of the infrared X3Σ− state rovibrational
transitions, though they likely are better given the differences
between the two values of relative precision for the two data
sets. These oscillator strengths are particularly important
because, to the best of our knowledge, no astronomical
observations have been made with the infrared transitions in
the interstellar medium.
Overall, these calculations represent improved values for the

oscillator strengths because they are the only calculations that

Table 3
A Portion of the Line List with Positions, Oscillator Strengths, Lower State Energy, and Einstein A Coefficents

η′ v′ J′ N′ Fn′ η″ v″ J″ N″ Fn
″ Branch Position Position f Elower A

Parity Parity Label (cm−1) (Å ) (cm−1) (s−1)

X 1 1 0 F1e X 0 0 1 F3e pR13(0) 2926.0319 34175.977 1.59E-05 30.2832 30.20
X 1 1 2 F3e X 0 0 1 F3e rR3(0) 3019.2401 33120.917 2.99E-05 30.2832 60.60
X 1 1 0 F1e X 0 1 1 F2f pQ12(1) 2921.8971 34224.340 1.51E-05 34.418 85.82

Note. The table includes the upper (η′) and lower electronic states (η″), as well as the upper and lower quantum numbers with each transition’s appropriate branch
label. The line position is reported as vacuum wavenumber and wavelength in standard air for the A–X transitions and vacuum wavelength for the X–X transitions.

(This table is available in its entirety in machine-readable form.)

Figure 1. A portion of the experimental OH+ emission spectrum analyzed by
Hodges & Bernath (2017) plotted against a 1600 K simulation. The simulation
shows excellent agreement with the laboratory data.

Table 4
A List of Astrophysically Relevant Transitions in Wavelength in Standard Air

Transition Wavelengtha (Å) f (10−4)

(0, 0) qQ11(1) 3587.92650(16) 2.28
(0, 0) rR11(0) 3583.75574(16) 5.27
(0, 0) rR11(1) 3579.47011(15) 3.99
(0, 0) qQ22(1) 3577.133(12) 0.26
(0, 0) rQ21(0) 3572.65187(33) 3.12
(0, 0) rR22(1) 3570.6631(11) 1.08
(0, 0) sR21(0) 3566.4458(11) 1.17
(0, 0) rP31(0) 3565.34592(81) 1.28
(0, 0) sQ31(0) 3559.8062(13) 0.87
(0, 0) tR31(0) 3552.325(12) 0.05
(1, 0) qQ11(1) 3350.5956(15) 1.49
(1, 0) rR11(0) 3346.95559(74) 3.52
(1, 0) rR11(1) 3343.6395(10) 2.67
(1, 0) qQ22(1) 3341.223(11) 0.15
(1, 0) rQ21(0) 3337.3570(15) 2.06
(1, 0) rR22(1) 3335.959(11) 0.68
(1, 0) sR21(0) 3332.177(11) 0.82
(1, 0) rP31(0) 3330.409(11) 0.85
(1, 0) sQ31(0) 3326.369(11) 0.62
(1, 0) tR31(0) 3319.967(11) 0.04

Note. The transition labels in this table use the quantum number N in the
parenthesis rather than J. This is done to match the labels published in other
astronomical literature. This is discussed briefly in Hodges & Bernath (2017).
a Line positions from Hodges & Bernath (2017).
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account for the Herman–Wallis effect. To assess the magnitude
of this effect, we have calculated the line strengths with and
without the Herman–Wallis effect, which is caused by a
rotational dependence in the vibrational wavefunction (Bernath
2016). The Herman–Wallis effect is accounted for by LEVEL
because it solves for the rovibrational wavefunction. In the
infrared fundamental band, the P-branch is significantly
stronger and the Herman–Wallis correction factor increases
with lower rotational quantum number, J″. As an example, by
J″=10, the values with versus without the inclusion of the
Herman–Wallis effect differ by 80%. The magnitude of the
Herman–Wallis effect in the UV transitions is not as
pronounced. By J″=15, the data sets differ by 5%. We
recommend that these f-values be used for the determination of
column densities, as they represent a more accurate rotational
dependence to the line strengths.

Support was provided by the NASA Laboratory Astro-
physics program.

Software: RKR1 (Le Roy 2017b), LEVEL (Le Roy 2017a),
MOLPRO (Werner et al. 2015), PGOPHER (Western 2017).
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