567 research outputs found

    EFFECTS OF RELAXATION AND CITALOPRAM ON SEVERITY AND FREQUENCY OF THE SYMPTOMS OF IRRITABLE BOWEL SYNDROME WITH DIARRHEA PREDOMINANCE

    Get PDF
    Objectives: Irritable bowel syndrome (IBS) is the most prevalent functional bowel disorder which is characterized by chronic abdominal pain and altered bowel habit in the absence of any organic disease. This study examined the effects of ``relaxation and citalopram'' in comparison to ``citalopram'' alone on alleviating the symptoms of IBS patients with diarrhea predominance. Methodology: This study was a randomized clinical trial which included 64 IBS patients. The patients were selected according to Rome-III criteria, and were divided into two groups. Bowel Symptoms Severity and Frequency Scale (BSS-FS) was used for evaluation of the patients' symptoms. Data was analyzed using analysis of covariance (ANCOVA). Results: There were significant differences in the severity and frequency of IBS symptoms between two groups after the study period regarding BSS-FS (P 0.05). Conclusion: Relaxation in addition to citalopram in IBS patients with diarrhea predominance can decrease the severity and frequency of symptoms. However, stopping this treatment may lead to recurrence of the symptoms

    Wound Healing Potential of Chlorogenic Acid and Myricetin-3-O-β-Rhamnoside Isolated from Parrotia persica

    Get PDF
    Wound healing is a complex physiological process that is controlled by a well-orchestrated cascade of interdependent biochemical and cellular events, which has spurred the development of therapeutics that simultaneously target these active cellular constituents. We assessed the potential of Parrotia persica (Hamamelidaceae) in wound repair by analyzing the regenerative effects of its two main phenolic compounds, myricetin-3-O-β-rhamnoside and chlorogenic acid. To accomplish this, we performed phytochemical profiling and characterized the chemical structure of pure compounds isolated from P. persica, followed by an analysis of the biological effects of myricetin-3-O-β-rhamnoside and chlorogenic acid on three cell types, including keratinocytes, fibroblasts, and endothelial cells. Myricetin-3-O-β-rhamnoside and chlorogenic acid exhibited complementary pro-healing properties. The percentage of keratinocyte wound closure as measured by a scratch assay was four fold faster in the presence of 10 µg/mL chlorogenic acid, as compared to the negative control. On the other hand, myricetin-3-O-β-rhamnoside at 10 µg/mL was more effective in promoting fibroblast migration, demonstrating a two-fold higher rate of closure compared to the negative control group. Both compounds enhanced the capillary-like tube formation of endothelial cells in an in vitro angiogenesis assay. Our results altogether delineate the potential to synergistically accelerate the fibroblastic and remodelling phases of wound repair by administering appropriate amounts of myricetin-3-O-β-rhamnoside and chlorogenic acid

    The influence of intercalating perfluorohexane into lipid shells on nano and microbubble stability

    Get PDF
    Microbubbles are potential diagnostic and therapeutic agents. In vivo stability is important as the bubbles are required to survive multiple passages through the heart and lungs to allow targeting and delivery. Here we have systematically varied key parameters affecting microbubble lifetime to significantly increase in vivo stability. Whilst shell and core composition are found to have an important role in improving microbubble stability, we show that inclusion of small quantities of C6F14 in the microbubble bolus significantly improves microbubble lifetime. Our results indicate that C6F14 inserts into the lipid shell, decreasing surface tension to 19 mN m-1, and increasing shell resistance, in addition to saturating the surrounding medium. Surface area isotherms suggest that C6F14 incorporates into the acyl chain region of the lipid at a high molar ratio, indicating ∼2 perfluorocarbon molecules per 5 lipid molecules. The resulting microbubble boluses exhibit a higher in vivo image intensity compared to commercial compositions, as well as longer lifetimes

    Magnetically actuated particle-based procedures in continuous flow

    Get PDF
    We demonstrate a versatile multilaminar flow microfluidic device in which magnetic particles are used as mobile supports for performing two important applications, namely (i) a clinically relevant sandwich immunoassay, and (ii) polye-lectrolyte coating of templates towards the fabrication of microcapsules for drug delivery applications. Furthermore, we demonstrate the use of a different force, diamagnetic repulsion, for deflecting polystyrene particles through a reagent stream with a view to performing multilaminar flow studies on diamagnetic material such as polymer particles and cells

    Tumour associated vasculature-on-a-chip for the evaluation of microbubble-mediated delivery of targeted liposomes

    Get PDF
    The vascular system is the primary route for the delivery of therapeutic drugs throughout the body and is an important barrier at the region of disease interest, such as a solid tumour. The development of complex 3D tumour cultures has progressed significantly in recent years however, the generation of perfusable vascularised tumour models still presents many challenges. This study presents a microfluidic-based vasculature system that can be induced to display properties of tumour-associated blood vessels without direct incorporation of tumour cells. Conditioning healthy endothelial–fibroblast cell vasculature co-cultures with media taken from tumour cell cultures was found to result in the formation of disorganised, tortuous networks which display characteristics consistent with those of tumour-associated vasculature. Integrin αvβ3, a cell adhesion receptor associated with angiogenesis, was found to be upregulated in vasculature co-cultures conditioned with tumour cell media (TCM) – consistent with the reported αvβ3 expression pattern in angiogenic tumour vasculature in vivo. Increased accumulation of liposomes (LSs) conjugated to antibodies against αvβ3 was observed in TCM networks compared to non-conditioned networks, indicating αvβ3 may be a potential target for the delivery of drugs specifically to tumour vasculature. Furthermore, the use of microbubbles (MBs) and ultrasound (US) to further enhance the delivery of LSs to TCM-conditioned vasculature was investigated. Quantification of fluorescent LS accumulation post-perfusion of the vascular network showed 3-fold increased accumulation with the use of MBs and US, suggesting that targeted LS delivery could be further improved with the use of locally administered MBs and US

    FRESH: Fréchet similarity with hashing

    Get PDF
    This paper studies the r-range search problem for curves under the continuous Fréchet distance: given a dataset S of n polygonal curves and a threshold >0 , construct a data structure that, for any query curve q, efficiently returns all entries in S with distance at most r from q. We propose FRESH, an approximate and randomized approach for r-range search, that leverages on a locality sensitive hashing scheme for detecting candidate near neighbors of the query curve, and on a subsequent pruning step based on a cascade of curve simplifications. We experimentally compare FRESH to exact and deterministic solutions, and we show that high performance can be reached by suitably relaxing precision and recall
    corecore