695 research outputs found

    Network motif frequency vectors reveal evolving metabolic network organisation

    Get PDF
    At the systems level many organisms of interest may be described by their patterns of interaction, and as such, are perhaps best characterised via network or graph models. Metabolic networks, in particular, are fundamental to the proper functioning of many important biological processes, and thus, have been widely studied over the past decade or so. Such investigations have revealed a number of shared topological features, such as a short characteristic path-length, large clustering coefficient and hierarchical modular structure. However, the extent to which evolutionary and functional properties of metabolism manifest via this under- lying network architecture remains unclear. In this paper, we employ a novel graph embedding technique, based upon low-order network motifs, to compare metabolic network structure for 383 bacterial species categorised according to a number of biological features. In particular, we introduce a new global significance score which enables us to quantify important evolutionary relationships that exist between organisms and their physical environments. Using this new approach, we demonstrate a number of significant correlations between environmental factors, such as growth conditions and habitat variability, and network motif structure, providing evidence that organism adaptability leads to increased complexities in the resultant metabolic network

    Complexity and robustness in hypernetwork models of metabolism

    Get PDF
    Metabolic reaction data is commonly modelled using a complex network approach, whereby nodes represent the chemical species present within the organism of interest, and connections are formed between those nodes participating in the same chemical reaction. Unfortunately, such an approach provides an inadequate description of the metabolic process in general, as a typical chemical reaction will involve more than two nodes, thus risking over-simplification of the the system of interest in a potentially significant way. In this paper, we employ a complex hypernetwork formalism to investigate the robustness of bacterial metabolic hypernetworks by extending the concept of a percolation process to hypernetworks. Importantly, this provides a novel method for determining the robustness of these systems and thus for quantifying their resilience to random attacks/errors. Moreover, we performed a site percolation analysis on a large cohort of bacterial metabolic networks and found that hypernetworks that evolved in more variable enviro nments displayed increased levels of robustness and topological complexity

    Spreading dynamics on spatially constrained complex brain networks

    Get PDF
    The study of dynamical systems defined on complex networks provides a natural framework with which to investigate myriad features of neural dynamics and has been widely undertaken. Typically, however, networks employed in theoretical studies bear little relation to the spatial embedding or connectivity of the neural networks that they attempt to replicate. Here, we employ detailed neuroimaging data to define a network whose spatial embedding represents accurately the folded structure of the cortical surface of a rat brain and investigate the propagation of activity over this network under simple spreading and connectivity rules. By comparison with standard network models with the same coarse statistics, we show that the cortical geometry influences profoundly the speed of propagation of activation through the network. Our conclusions are of high relevance to the theoretical modelling of epileptic seizure events and indicate that such studies which omit physiological network structure risk simplifying the dynamics in a potentially significant way

    A systematic review of current knowledge of HIV epidemiology and of sexual behaviour in Nepal

    Get PDF
    OBJECTIVE: To systematically review information on HIV epidemiology and on sexual behaviour in Nepal with a view to identifying gaps in current knowledge. METHODS: Systematic review covering electronic databases, web-based information, personal contact with experts and hand searching of key journals. RESULTS: HIV-1 seroprevalence has been rising rapidly in association with high-risk behaviours, with current levels of 40% amongst the nation's injecting drug users and approaching 20% amongst Kathmandu's female commercial sex workers (FCSWs). HIV seroprevalence remains low in the general population (0.29% of 15–49 year olds). There are significant methodological limitations in many of the seroprevalence studies identified, and these estimates need to be treated with caution. There are extensive migration patterns both within the country and internationally which provide the potential for considerable sexual networking. However, studies of sexual behaviour have focused on FCSWs and the extent of sexual networks within the general population is largely unknown. CONCLUSIONS: Whilst some of the ingredients are present for an explosive HIV epidemic in Nepal, crucial knowledge on sexual behaviour in the general population is missing. Research on sexual networking is urgently required to guide HIV control in Nepal. There is also a need for further good-quality epidemiological studies of HIV seroprevalence
    • …
    corecore