research

Tracking vibrational energy on curved shell structures of variable thickness in the mid-to-high frequency - a ray tracing approach

Abstract

Modelling the vibro-acoustic properties of mechanical built-up structures is a challenging task. Commonly employed techniques, such as finite element methods, are robust only in the low frequency regime. Recently, Discrete Flow Mapping has been forwarded as a cost efficient alternative method for mid- to high-frequency vibro-acoustic modelling. Discrete Flow Mapping employs local ray tracing approximations, providing a good model of the ray dynamics in homogeneous, isotropic flat plates or on curved shells in the geodesic high-frequency limit. However, in the mid-frequency case when the wavelength approaches the shell’s local radius of curvature, the resulting ray dynamics depend on the curvature in a non-trivial way. In this work, we consider ray-tracing approaches for modelling vibrational energy transport in curved shells of variable thickness at mid-to-high frequencies. In particular, we analyse mid-frequency effects on the dispersion curves for curved shells of variable thickness, and identify novel reflection/transmission behaviour

    Similar works