
Tracking vibrational energy on curved shell structures of

variable thickness in the mid-to-high frequency limit - a

ray-tracing approach

J J Crofts 1,2, N Søndergaard 2 and D J Chappell 1

1 Nottingham Trent University, School of Science and Technology,

Department of Physics and Mathematics, Nottingham, UK

e-mail: jonathan.crofts@ntu.ac.uk

2 inuTech GmbH, 90429 Nürnberg, Germany

Abstract
Modelling the vibro-acoustic properties of mechanical built-up structures is a challenging task. Commonly

employed techniques, such as finite element methods, are robust only in the low frequency regime. Recently,

Discrete Flow Mapping has been forwarded as a cost efficient alternative method for mid- to high-frequency

vibro-acoustic modelling. Discrete Flow Mapping employs local ray tracing approximations, providing a

good model of the ray dynamics in homogeneous, isotropic flat plates or on curved shells in the geodesic

high-frequency limit. However, in the mid-frequency case when the wavelength approaches the shell’s local

radius of curvature, the resulting ray dynamics depend on the curvature in a non-trivial way. In this work,

we consider ray-tracing approaches for modelling vibrational energy transport in curved shells of variable

thickness at mid-to-high frequencies. In particular, we analyse mid-frequency effects on the dispersion

curves for curved shells of variable thickness, and identify novel reflection/transmission behaviour.

1 Introduction

Structure borne noise propagation in curved shells is, in general, characterised by directed wave energy

transport. Ray tracing is well suited for capturing such directed propagation at mid-to-high frequencies,

whereas popular statistical methods such as statistical energy analysis (SEA) often have problems capturing

directed energy transport [1]. Ray tracing is used in a wide range of applications including in room acoustics,

radar scattering and seismology [2] as well as in computer graphics [3]. However, ray based methods have

not been widely adopted for structural engineering applications and this includes the application of interest

for this study: modelling vibrational energy propagation on curved shells of variable thickness.

A methodology known as Dynamical Energy Analysis (DEA) has relatively recently been proposed for mod-

elling vibrational energy propagation using ideas from ray tracing and dynamical systems [4]. Depending on

the order of approximation of the wave energy density, DEA interpolates between SEA and full ray tracing.

DEA has been implemented for straight line rays [5, 6] and their curved equivalent, geodesic rays [7]. How-

ever, for propagation below and in the vicinity of the ring frequency, geodesic ray tracing no longer suffices.

Applying an Eikonal approximation to the thin shell wave equations of Donell leads to modified dispersion

curves [8], from which a ray dynamics can be obtained. These dispersion curves depend explicitly on both

the local radii of curvature and the shell thickness. Regions of high curvature may lead to backscattering of

rays (and waves) near bends [9, 10]. Changes in shell the thickness on such a bend will also contribute to

this backscattering, as well as giving rise to refraction in accordance with Snell’s Law.

Motivated by implementing these features in a DEA treatment, and thus into a noise and vibration simulation

tool, we investigate a ray tracing model on a configuration of two plates joined to a segment of a cylindrical
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shell below the ring frequency. We model the variations in curvature and thickness using smooth interpolation

functions; applications of such a model include castings such as a car shock tower, or smoothly curved shells

in general. This smoothness also allows for a phase-plane analysis of the problem, providing insight to

the underlying dynamical behaviour. The aim is to uncover quantitative laws of reflection and transmission

across the curved ridge for use in DEA. The idea is that given an underlying radius of curvature associated

with the connection between two DEA subsystems and a given mode type, frequency and incoming direction,

one can use the laws of reflection and transmission from the underlying ray tracing model to determine the

behaviour in the DEA model. The extension of this methodology to complex meshed structures would follow

using the Discrete Flow Mapping (DFM) technique [7] . Changes in material thickness between two DEA

subsystems (or two DFM elements) must be accounted for in the ray tracing model and the effect of these

thickness variations on the ray dynamics will be the main focus of this study.

In the next section, we give a brief and general introduction into the governing shell theory. We will then

describe our ray-tracing model for a cylindrical ridge of variable thickness in §3. The results of a correspond-

ing numerical study are presented in §4, including a phase-plane analysis of the ray dynamics from which

one can infer the underlying physics in terms of reflection, transmission and refraction. Finally, in §5 we

conclude the study and suggest directions for future study.

2 Thin shell theory

The thin shell theory of Donell is one of the simplest and most widely adopted models [11]. In this theory,

the moments and transverse forces are expressed by the displacement w of the middle surface as known from

the theory of laterally loaded plates. The displacement vector of a point originally on the mid-surface of the

shell is decomposed into tangential and normal components as u = [u1 u2 w].

For an isotropic shell of thickness h, Young’s modulus E, density ρ and Poisson ratio ν, the shell equation

for the normal displacement is given by [8]

ρh
∂2w

∂t2
= −DαDβ

(

B(1− ν)DαDβw
)

−DαD
α
(

BνDβD
βw

)

− C
(

(1− ν)dαβǫ
β
α + νdααǫ

β
β

)

,

(1)

where

B =
Eh3

12(1 − ν2)
and C =

Eh

1− ν2
(2)

are the bending and extensional stiffness, respectively. Note that these quantities are both spatially dependent

due the the spatial dependence of the thickness h. All Greek alphabet indices take values from the set {1, 2}.

The membrane strain is given by

ǫαβ =
1

2
(Dαuβ +Dβuα) + dαβw, (3)

while the tangential displacements (u1, u2) in the directions (x1, x2), respectively, satisfy [8]

ρh
∂2uα

∂t2
= Dβ

(

C
(

(1− ν)ǫαβ + νǫγγg
αβ

))

. (4)

Here, dαβ denotes the covariant surface curvature tensor, gαβ the covariant metric tensor and Dα covariant

differentiation with respect to the coordinate xα. Note that contravariant and mixed forms of the above

tensors are then obtained in the usual manner [12].
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Figure 1: Curvature and shell thickness profiles for the cylindrical ridge model introduced in §2.

2.1 Simplified model for a singly curved shell of variable thickness

In this Section we adopt the above shell theory of Donell to consider the case of a cylindrical ridge consisting

of a cylindrical section with radius of curvature R coupled smoothly to two planar sections. We assume that

the cylindrical ridge has principal curvature κ1(x
1) in the x1 direction and zero curvature in the x2 direction;

see Fig. 1a. Note that in that case, the curvature tensor dαβ = 1 if α = β = 1 and is otherwise zero, whilst

the metric tensor has components given by gαβ = 0 if α 6= β, g11 = R2 and g22 = 1.

We assume that the principal curvature κ1(x
1) is of the form

κ1(x
1) =

f(x1)

f(0)
κcyl, (5)

where κcyl denotes the maximum curvature of the cylindrical region, and f is an interpolation function given

by

f(x1) =
1

2

[

erf

(

x1 + x∗

∆x

)

− erf

(

x1 − x∗

∆x

)]

.

This choice of interpolation function f leads to a curvature profile that smoothly interpolates between zero

(flat) and κcyc (cylindrical) across a small transition region of width ∆x as shown in Fig. 1b. The centres

of the transition regions are located on either side of the cylindrical ridge at x1 = ± x∗. The maximum

curvature in the cylindrical region is denoted κcyl = 1/R.

In addition, we consider shells with variable thickness profiles of the form

h(x) = hmax

[

1− peβx

1 + eβx

]

(6)

where hmax denotes the maximum shell-thickness, p ∈ (0, 1) controls the minimal shell-thickness, phmax,

and β is a steepness parameter controlling the rate at which shell-thickness varies. This thickness profile is

shown in Fig. 1c for β = 100 and p = 0.5. These are also the parameter values applied in our experiments,

although similar results were found over a range of parameter values.

3 From waves to rays

A ray-tracing model is obtained from equations (1) and (4) by moving to the short wavelength asymptotics

using the ansatz

u(x, y, t) = u
(ǫ)(x1, x2, t) exp

(

iǫ−λφ
(

x1, x2, ǫµt
)

)

, (7)

where φ is a phase function and ǫ is a small parameter. Defining the angular frequency ω = −φ(x1, x2, ǫµt)
and the wavenumber vector k to have entries kα = Dαφ(x

1, x2, ǫµt), one can study either bending or
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Figure 2: Plots (a) and (b) show respectively the dispersion relations for a cylinder and a flat plate. Plot (c)

displays the maximum k2 value of the dispersion relation as a function of x1. The maximal values of the

dispersion relations shown in plots (a) and (b) are highlighted, respectively, by triangular and square markers,

as well as the global minima – which can be used to determine rules for transmission/reflection (see §4).

in-plane waves by selecting different choices of the parameters λ ≥ 0 and 0 ≤ µ ≤ λ. Note that the pre-

factors of t vanish after applying the asymptotic scaling and setting λ = µ = 0. Assuming that k = |k| is

large in comparison to curvature, Pierce derived a general dispersion relation [11] that was later presented

in a simplified form by Norris and Rebinsky [8]. This dispersion relation can be employed to generate a

Hamiltonian formulation of the ray tracing model for a singly curved shell of variable thickness as described

in the next section.

3.1 Ray tracing below the ring frequency

The ring frequency for the cylinder is defined relative to the extensional mode and corresponds to the fre-

quency above which a longitudinal wave can traverse around the cylinder. Slightly above and around the

ring frequency, approximate forms for the in-plane and bending modes are obtained using different scalings

and eventually well beyond the ring frequency the dispersion relations reduce to those of a flat plate. Let

us define the longitudinal wavenumber as Ω = ω/cL, with cL the longitudinal plate wave speed. Denot-

ing the wavenumber at the ring frequency as Ω = ΩR, we find that for the singly curved geometry under



consideration in this work we have ΩR = κ1 where κ1 is the principal curvature in the x1 direction.

Below the ring frequency, the full dispersion relationship is usually considered. For the configuration in

Figure 1a with zero curvature in the x2-direction we obtain the following expression from [8] in physical

coordinates:

H(x1, k, ω) =

(

Ω2 − 1

2
k2(1− ν)

)(

(Ω2 − k2)

(

Ω2 − h(x1)2k4

12

))

+ (1− ν2)

(

Ω2κ1(x
1)2k22 −

1

2
(1− ν)κ1(x

1)2k42

)

.

(8)

Note that here we have emphasised the x1− dependence of both the shell thickness h and the principle

curvature κ1. Dispersion relations for a cylinder and flat plate are shown in figures 2a and 2b, respectively,

for the parameter values given in Appendix A. Note that the outer part of the dispersion curve for the cylinder

shown in Fig. 2a has also been observed experimentally [13].

For frequency domain problems with isotropic materials, such as those considered in this work, the Hamil-

tonian H defined in (8) gives rise to the following system of four ordinary differential equations (ODEs) that

govern the ray dynamics on a singly curved shell:

ẋα =
∂H

∂kα
(9)

k̇α = − ∂H

∂xα
. (10)

Note that due to the translational invariance in the x2-direction, it suffices to study the above system of ODEs

in the (x1, k1) phase-plane only.

4 Numerical results

In this section we investigate the transmission/reflection behaviour of rays corresponding to an incident

bending mode (see Figure 3). A range of incoming directions are used corresponding to a strip in the lower

right corner of the figure. We find that rays transmit for sufficiently large values of |k1|, whereas for smaller

values of |k1| the rays reflect. As for the case of a shell with constant thickness studied in Refs. [9, 10], it is

possible to determine a threshold value (k∗1 , k
∗

2) such that for values of the tangential wavenumber k2 below

the threshold we have transmission and for k2 above the threshold we have reflection. This leads to a simple

transmission-reflection law of the form:

Transmission probability(k2) =

{

1 if k2 < k∗2
0 otherwise.

(11)

The threshold value defined above can be shown to correspond to a hyperbolic fixed point, and in partic-

ular, the separatrices emanating from this point, which can be seen to divide the phase space into distinct

transmission and reflection regions. To determine the location of the fixed point, it is convenient to consider

the size of the dispersion curves as a function of x1 (see Figure 2). In particular, note that the tangential

wavenumber k2 is constant along each trajectory as a consequence of Eq. (10), which gives that k̇2 = 0 due

to translational invariance in x2. Hence, transmission can only occur for values of k2 that exist for all values

of x1. Note that this observation provides a practical means for computing the fixed point by considering the

function, F say, that for each x1 value returns the maximal k2 value of the corresponding dispersion curve.

The global minima of this function corresponds to the fixed point, that is

(x∗1, k∗2) = (argmin F,minF ). (12)
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Figure 3: Ray trajectories represented in (a) the (x1, k1) phase-plane and (b) the (x1, x2) plane. The close up

in (a) shows the hyperbolic fixed point (x∗1, k∗1) ≈ (−0.2275,−147) that determines transmission-reflection

behaviour on the ridge for waves incoming from the right.

The above procedure was implemented (see Figure 2c) to determine the lower fixed point shown in Figure

3a and to obtain a numerical approximation of the corresponding threshold value for waves incoming from

the right as (k∗1 , k
∗

2) = (−263.38, 83.39).

Compared to the constant thickness model considered in [9, 10], the main differences in the variable thickness

case studied here relate to the loss of reflective symmetry of the (x1, k1) phase-plane about the line x1 = 0.

Note that for any transmitting trajectory, the change in the value of k1 between the left and right sides of the

ridge corresponds to a refraction according to Snell’s Law. In the numerical experiment here, the thickness of

the plate on the left is twice as thick as the plate on the right. This leads to a ratio of
√
2 between the bending

wavenumbers on the right and the left. Figures 4a and 4b show this loss of symmetry and that the transmitted

trajectories in Fig. 4b emerge on the right with an increase in the absolute value of the wavenumber k1. From

the above, it is straightforward to derive that this increase must obey

k2R = 2k2L + k22, (13)

where kL corresponds to k1 on the left-hand side and kR corresponds to k1 on the right; recall that k2 is

constant along the whole trajectory. We observe from our numerical results that this relation holds for the

calculations shown in Fig. 4b. As a consequence of this, the wavenumber threshold also becomes dependent

on whether the incoming ray approaches the ridge from the thicker plate on the left, or the thinner plate to

the right. Here, the wavenumber threshold for incoming waves from the left (see Figure 4b) is given by

(k∗1 , k
∗

2) = (176.66, 83.39), compared with (k∗1 , k
∗

2) = (−263.38, 83.39) for incoming waves from the right

given above. Note that these threshold wavenumbers satisfy the relation (13) as expected.

5 Conclusions

We have performed ray tracing for a cylindrical ridge smoothly connected to two flat plates of differing

thickness using Donell’s shell theory. In particular, our calculations suggest the existence of a threshold in-

cident wavenumber separating rays that exhibit reflective or transmissive behaviour. Importantly, in contrast

to the constant shell thickness case [9, 10], the wavenumber threshold depends on whether the incident wave

approaches the ridge from the thicker or the thinner plate and transmitted rays undergo refraction accord-

ing to Snell’s Law. These results suggest that relatively simple scattering laws can be deployed to model

the propagation of structure-borne noise in shells of variable thickness, and ultimately to built-up structures
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Figure 4: Phase portraits for the cylindrical ridge model with (a) constant thickness as studied in [9, 10]

(obtained by setting p = 0 in Equation (6)); and (b) variable thickness with p = 0.5.

containing thin shell components. Future work shall focus on extending the results here to multiply-curved

shells, as well as incorporating the observed scattering laws into ray-based simulations of built-up structures

using Dynamical Energy Analysis.
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Appendix A Parameter values for the numerical studies

The computations throughout this work were done using the following parameter choices [13, 14]:

• R = 55.0 mm.

• h0 = 0.53 mm.

• x∗ = 43.2 mm.

• ∆x = 14.4 mm.

• E = 195 GPa.

• ρ = 7700 kg/m3.

• ν = 0.28.

• ω = 9742π Rad/s.


