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Abstract Despite the highly convoluted nature of the hu-
man brain, neural field models typically treat the cortex as a
planar two-dimensional sheet of neurons. Here, we present
an approach for solving neural field equations on surfaces
more akin to the cortical geometries typically obtained from
neuroimaging data. Our approach involves solving the in-
tegral form of the partial integro-differential equation di-
rectly using collocation techniques alongside efficient nu-
merical procedures for determining geodesic distances be-
tween neural units. To illustrate our methods, we study lo-
calised activity patterns in a two-dimensional neural field
equation posed on a periodic square domain, the curved sur-
face of a torus, and the cortical surface of a rat brain, the
latter of which is constructed using neuroimaging data. Our
results are twofold: Firstly, we find that collocation tech-
niques are able to replicate solutions obtained using more
standard Fourier based methods on a flat, periodic domain,
independent of the underlying mesh. This result is particu-
larly significant given the highly irregular nature of the type
of meshes derived from modern neuroimaging data. And
secondly, by deploying efficient numerical schemes to com-
pute geodesics, our approach is not only capable of mod-
elling macroscopic pattern formation on realistic cortical ge-
ometries, but can also be extended to include cortical archi-
tectures of more physiological relevance. Importantly, such
an approach provides a means by which to investigate the
influence of cortical geometry upon the nucleation and prop-
agation of spatially localised neural activity and beyond. It
thus promises to provide model-based insights into disorders
like epilepsy, or spreading depression, as well as healthy
cognitive processes like working memory or attention.
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Fig. 1 (a) The Mexican hat connectivity function (b) Sigmoidal firing
rate function
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1 Introduction

The nervous system consists of approximately 1011 neurons
and 1014 connections all embedded within a highly con-
strained anatomical space. To better understand such a com-
plex multi-scale system, neural models are deployed that use
a range of mathematical and computational techniques to ex-
plain/predict function and behaviour of the brain at a range
of different scales (Amari 1977; Jirsa and Haken 1996). One
such approach, the foundations of which were laid in the
1970s by Wilson and Cowan (1972), and Amari (1977), is
neural field theory, which employs a continuum approach to
model the activity of large populations of neurons in the cor-
tex. These techniques are of great interest, not only from a
mathematical point-of-view, but also from an experimental
neuroscience point-of-view, since they can replicate many of
the dynamic patterns of brain activity that are observed us-
ing modern neuroimaging methodologies (Bojak et al 2011;
Coombes 2010; Sanz-Leon et al 2015).
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Neural field models (NFM) are built from neural masses
and typically take the form of a nonlinear partial integro-
differential equation of the form

∂

∂ t
u(x, t) =−u(x, t)+

∫
Ω

w(x,x′)S(u(x′, t))dΩ(x′). (1)

Here u(x, t) describes the average activity of the neuronal
population at position x ∈ Ω at time t ∈ [0,T ], while the
nonlinear function S represents the mean firing rate, and typ-
ically takes the form of a sigmoid function (see Figure 1(b)),
although other popular choices include the Heaviside func-
tion and piecewise linear functions (Coombes 2010). The
connectivity kernel, w, describes how neurons positioned at
x and x′ interact, and commonly takes the form of a mexican-
hat function (see Figure 1(a)). Importantly, the mexican-hat
connectivity function admits translational invariance and so
depends only on the distance between any two points, that is
w(x,x′) ≡ w(d(x,x′)), where d is a suitably defined metric
on Ω . Note that the choice of metric reflects the underlying
geometry and so, for example, if Ω = R2, then d denotes
Euclidean distance; however, in this work we also consider
NFMs in the case were Ω = M is a closed, two-dimensional
surface, in which case d represents the geodesic distance be-
tween points, as defined by the induced metric on M.

Techniques for solving NFMs such as Equation (1) typ-
ically involve either transforming the problem to an equiva-
lent differential equation (Laing and Troy 2003; Laing 2013),
which can be investigated using a mixture of well estab-
lished analytical and/or numerical methods, or, via direct
numerical simulation of the integral form of (1) using fast
Fourier transforms (FFTs) to efficiently solve the convolu-
tion integral (Rankin et al 2014). The above approaches,
however, rely either on special choices for the integral ker-
nel (e.g. kernels, w, whose Fourier transform is a rational
function) or are restricted to uniform, periodic domains. In
the present paper, we combine collocation techniques with
efficient numerical algorithms for computing geodesics in
order to solve NFMs such as (1) on closed, two-dimensional
surfaces, thus opening up the possibility of extending these
methods to analyse cortical structures.

Recent studies suggest that myriad neurological condi-
tions are accompanied by alterations in cortical folding (Zhang
et al 2009; Wobrock et al 2010; White and Hilgetag 2011)
and so it is of great importance to investigate the relation be-
tween neuroanatomy and brain dynamics. However, whilst
a number of recent studies have investigated the relation be-
tween surface morphology and large-scale brain connectiv-
ity of both grey and white matter (O’Dea et al 2013; Hen-
derson and Robinson 2014; Lo et al 2015), and, to a lesser
extent the effect of curvature on reaction-diffusion models of
neural activity (see, for example, (Kneer et al 2014; Kroos
et al 2016) and references therein), the role that cortical ge-
ometry plays in non-local models of brain activity, such as

the NFM given by (1), is less well-studied. Some progress
in this direction was recently made by Visser et al (2017),
who used a time-delayed NFM to investigate the behaviour
of both standing and travelling wave solutions on a sphere;
however, their approach is restricted to geometries for which
a closed-form for the distance function, d, exists. Motivated
by the above, in this paper we put forward a novel tech-
nique for solving NFMs on general, closed two-dimensional
surfaces, the overarching aim of which is to improve un-
derstanding of the effects that cortical features, such as fis-
sures and sulci, have on activation spreading dynamics in
both healthy and diseased brains.

The paper is organised as follows. In §2 we introduce
the NFM studied in this work, before going on to discuss
the method of collocation as applied to integro-differential
equations such as that in (1). We finish §2 by giving a brief
overview of the Mitchell, Mount and Papadimitriou (MPP)
algorithm (Mitchell et al 1987) for computing geodesics on
polygonal surfaces, which allows us to consider NFMs on
non-flat domains. In §3, we present the results of applying
our numerical techniques to solve a NFM on a flat, periodic
square domain, the closed surface of a torus and the cortical
surface of a rat brain. In the first two cases, we perform a
comparative analysis against more standard techniques, de-
ploying either Fourier based methods and/or the trapezoidal
rule to compute the integral in (1), and investigate the de-
pendence of our results on the underlying mesh. We then
consider solutions of our NFM on the folded structure of the
rat brain, which allows us to highlight the extent to which
cortical geometry influences solutions of our NFM. We fin-
ish in §4 by giving an overview of the work as well as ex-
plaining its possible implications, before outlining a number
of possibilities for future studies.

2 Methods

2.1 Governing neural field model

We consider a two-dimensional neural field model of the
type studied in (Laing 2014):

∂u(x, t)
∂ t

= A
∫

Ω

w(x,x′)S(u(x′, t)−h)dΩ(x′)

−u(x, t)−a(x, t),

τ
∂a(x, t)

∂ t
= Bu(x, t)−a(x, t).

(2)

The above includes an additional recovery variable a which
acts to repolarize u via negative feedback, while the param-
eters A,B,h and τ are related to the sensitivities and time-
scale of the problem (Laing 2014). As mentioned above,
the integral kernel w(x,x′) describes interactions between
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neighbouring neurons. We take the following functional form
for w in our work

w(x,x′) = e−d(x,x′)2 −0.17e−0.2d(x,x′)2
, (3)

which is a mexican-hat type function, and we choose d to
be a suitably defined metric; see Figure 1(a) for the case in
which Ω = R2. In addition, we take S be a sigmoid of the
form

S(u) =
1

1+ e−βu ,

which converts population activity to firing frequency at a
rate governed by the steepness parameter β . In all of our
experiments the model parameters are chosen as in (Laing
2014), that is

A = 2,B = 0.4,h = 0.8,τ = 3 and β = 5.

2.2 Collocation method

Collocation is an example of a projection method that ap-
proximates an infinite dimensional problem, such as (2), by
a finite dimensional one via a suitably defined projection
operator Pn. In what follows we provide brief details of
the method with piecewise linear interpolation as applied to
Equation (2) (further details can be found in the book by
Atkinson (1997)).

Consider the triangulation Tn = {41, ...,4n} of the do-
main Ω and suppose that on each triangle 4k we employ
a piecewise linear approximation of the unknown functions
u(x, t) and a(x, t). In this case the projection operator takes
the form

Pnu(x, t) = un(x, t)

=
3

∑
j=1

u(vk, j, t)l j(x), x ∈4k, k = 1, . . . ,n.

Here, vk, j denotes the coordinates of the jth interpolation
point of the kth triangle 4k, while l j denotes the linear La-
grange basis functions (Atkinson 1997). Note that a similar
projection can be applied to a(x, t).

The above allows us to formulate the following approx-
imation to (2):

∂un(x, t)
∂ t

= APn

{∫
Ω

w(x,x′)S(u(x′, t)−h)dΩ(x′)
}

−un(x, t)−an(x, t),

τ
∂an(x, t)

∂ t
= Bun(x, t)−an(x, t).

(4)

Assuming this expression holds exactly at the node values,
v1,v2, . . . ,vnv , where nv refers collectively to a global num-
bering of the node points vk, j, we obtain a collocation scheme
for (2).

Fig. 2 Illustration of a domain that uses Cartesian grid points as trian-
gle vertices

To make the above collocation scheme more tractable
we perform the integration in (4) by applying a quadrature
rule over each triangle and summing the result. More specif-
ically, we employ the transformation Tk : σ →4k, given by

x′ = Tk(r,s) = (1− r− s)vk,1 + svk,2 + rvk,3,

which maps the unit simplex σ on to each triangle4k. This
enables us to integrate an arbitrary function, g say, over the
triangle4k as follows

∫
4k

g(x′)dx′ = 2Area(4k)
∫

σ

g(Tk(r,s))drds.

Here, the factor of 2Area(∆k) appears due to the Jacobian
determinant of the transformation Tk, which is given by

|det(DTk)(r,s)|=
∣∣∣∣det

(
xk,2− xk,1 xk,3− xk,1
yk,2− yk,1 yk,3− yk,1

)∣∣∣∣= 2Area(∆k),

where vk,i = (xk,i,yk,i), i = 1,2,3, are the vertices of the kth
triangle, ∆k (see (Atkinson 1997) for further details).

Substituting the above quadrature expression into Equa-
tion (4), and evaluating at the node values vi, i = 1,2, . . . ,nv,
gives

dun(vi)

dt
=−un(vi)−an(vi)+2A

(
n

∑
k=1

Area(4k)×

∫
σ

w(vi,Tk(r,s))S

(
3

∑
j=1

u(vk, j)l j(r,s)−h

)
drds

)
, (5)

dan(vi)

dt
=

1
τ
(Bun(vi)−an(vi)) , for i = 1,2, . . . ,nv.

The above results in a system of 2nv ordinary differential
equations that can be solved to determine approximate solu-
tions to (2). We have suppressed the t dependence in (5) for
brevity.
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2.3 Efficient Computation of Geodesics

The key difference between solving Equation (2) on a curved
surface as opposed to a planar domain (such as R2) is the
computation of the distance function, d(x,x′), appearing in
Equation (3), which, except in a very small number of cases,
must be computed numerically. To compute geodesic dis-
tances in our work, we employed the exact geodesic toolbox
(O’Rourke 1999), which is a MATLAB implementation of
the MMP (Mitchell, Mount and Papadimitriou) algorithm
(Mitchell et al 1987). Developed in 1987, the MMP algo-
rithm solves the discrete geodesic problem, i.e. it finds the
shortest path between two points, s and t say, on an arbitrary
polyhedral surface; it does this by simulating the continuous
propagation of a wave front of points equidistant from the
source point s until the target t is reached. The method is
reminiscent of Dijkstra’s algorithm for computing the min-
imum distance between vertex pairs on a graph (Dijkstra
1959) and is therefore often referred to as the continuous
Dijkstra algorithm.

3 Numerical Results

In this section we present the results of a number of numer-
ical experiments that were undertaken in order to check the
validity of the aformentioned techniques. Of particular im-
portance is our ability to reproduce solutions on generic,
irregular triangulations, such as those obtained from neu-
roimaging studies, and so we begin by investigating the ef-
fects of mesh regularity on solutions of (2) on a flat, periodic
domain, before moving onto look at more general, curved
domains.

3.1 Planar domain with periodic boundary conditions

When considering the numerical solution of Equation (2)
the main source of error is the approximation of the integral,
which for Ω = [−L,L]2, becomes

I =
∫ L

−L

∫ L

−L
w((x,y),(x′,y′))S(u(x′,y′)−h)dx′dy′. (6)

We note that since d(x,x′) =
√

(x− x′)2 +(y− y′)2 then the
integrals in (6) are of convolution type.

We compared the accuracy of computing the integral in
(6) using linear collocation against fast Fourier transform
(FFT) techniques together with the convolution theorem, and
the trapezoidal method, both of which require a regular spa-
tial discretisation on a Cartesian grid. In order to compare
these methods directly to piecewise linear collocation, we
employ a triangulation whose vertices correspond to the Carte-
sian grid points for the other two approaches, as shown in
Figure 2. In our experiments we fixed L= 7.5 and set u(x′)=
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Fig. 3 The error |Im+1− Im| plotted against grid size Nm+1 reveals ge-
ometric convergence rates for trapezoidal rule, FFTs and linear collo-
cation when computing the integral in (6)

w(0,x′), i.e. the connectivity kernel given in (3), since it
is qualitatively similar to the bump solutions admitted by
(2). It is worth noting, however, that similar results are ob-
tained for other sufficiently smooth choices of u (results not
shown). To investigate grid convergence, we considered a
sequence of refinements of an initial, regular grid consist-
ing of N0 = 81 nodes, such that at the mth stage of refine-
ment, the number of nodes is given by Nm = (2m · 8+ 1)2

for m = 1,2, . . . ,7. If we then denote by Im the numerical
approximation of (6) on the grid of size Nm, we can approx-
imate the order of convergence of the respective discretisa-
tion schemes by considering a log-log plot of the absolute er-
ror between consecutive grids, |Im+1− Im|, versus grid size,
Nm+1. Here we consider point-wise convergence and so all
results shown are for a representative grid point. Note that
we have repeated the analysis for other grid points and ob-
served almost identical behaviour (experiments not shown).

Our results are displayed in Figure 3. In particular, we
see that both the trapezoidal rule and FFTs display geomet-
ric convergence, as expected (see the review by Trefethen
and Weideman (2014) for a discussion of the convergence
properties of the trapezoidal rule on a periodic domain);
however, we find, perhaps somewhat surprisingly, that linear
collocation also exhibits the same geometric convergence.
To understand the above result, we consider the collocation
technique as applied to (6) in more detail below.

Firstly, note that employing linear collocation alongside
the three point quadrature rule

∫
σ

G(r,s)drds =
1
6
[G(0,0)+G(0,1)+G(1,0)],
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Fig. 4 Illustration of the refinement procedure for a general triangulated domain in which the initial mesh is generated using the DistMesh package

with G(r,s) = g(Tk(r,s)), as defined in §2, enables us to con-
struct the following numerical approximation to (6):

I ≈
n

∑
k=1

Area(4k)

3

 w(v,Tk(0,0))S

(
3

∑
j=1

u(vk, j)l j(0,0)−h

)

+w(v,Tk(0,1))S

(
3

∑
j=1

u(vk, j)l j(0,1)−h

)
(7)

+w(v,Tk(1,0))S

(
3

∑
j=1

u(vk, j)l j(1,0)−h

)  .
We can further simplify the above by noting that since we
are solving on a uniform Cartesian domain, Area(4k) =

∆x2/2 for all triangles, where here, ∆x (= ∆y) is the local
mesh spacing. Substituting this into (7) and evaluating the
Lagrange basis functions at the node points gives

∆x2

6

n

∑
k=1

w(v,Tk(0,0))S(u(vk,1)−h)+

w(v,Tk(0,1))S(u(vk,2)−h)+

w(v,Tk(1,0))S(u(vk,3)−h)

 .
Recalling that Tk(0,0) denotes the coordinates of the first
vertex in 4k, Tk(0,1) the second and Tk(1,0) the third, we
can rewrite the above equation as follows

n

∑
k=1

 w(v,vk,1)S(u(vk,1)−h)+w(v,vk,2)S(u(vk,2)−h) (8)

+w(v,vk,3)S(u(vk,3)−h)

 ∆x2

6
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Fig. 5 Convergence of linear collocation when computing the integral
in (6) on a general triangulation constructed using the DistMesh pack-
age. The orange and yellow lines indicate the slopes for first and second
order methods, respectively

However, since the triangle vertices are simply the Carte-
sian grid points, Equation (8) is nothing other than the trape-
zoidal rule for solving (6) on a periodic two-dimensional do-
main. The factor of 1/6 occurs due to the fact that each node
appears six times in the sum in (8). Thus, we have shown that
for a regular grid with periodic boundary conditions solving
Equation (6) using linear collocation and a quadrature rule
based only on the triangle vertices is equivalent to using the
trapezoidal rule. This explains the spectral convergence ob-
served in Figure 3.

Next, we considered the effects of mesh regularity on
the accuracy of computing the integral in (6). To do this
we deployed the DistMesh MATLAB package (Persson and
Strang 2004) to generate a general mesh, that is, one in which
the triangle vertices do not lie on a Cartesian grid, as in
our previous investigations. It is important to note that stan-
dard techniques such as those deployed above (i.e. trape-
zoidal and FFT methods) cannot be applied in this more



6 R Martin et al.

time
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y

Fig. 6 Travelling bump solutions of Equation (2) computed on a triangulation based on a Cartesian grid, using trapezoidal, FFTs and linear
collocation, respectively

Fig. 7 Travelling bump solution of Equation (2) computed on a general
DistMesh triangulation

general setting. As before, numerical errors were approx-
imated by comparing the numerical solution of (6) at the
same grid point across a range of increasingly fine meshes.
More precisely, we constructed an intial, coarse triangula-
tion of the square [−L,L]2 consisting of N0 = 79 nodes using
the DistMesh package, we then proceeded to refine this tri-
angulation by subdividing each triangle into four smaller tri-
angles, as illustrated in Figure 4. Note that boundary nodes
were fixed in all of our experiments in order to implement
the periodicity of the problem more easily. Our results are
displayed in Figure 5. In particular, we see that in contrast to
our earlier results, the geometric convergence breaks down
and we recover linear convergence as expected.

We solved Equation (2) using the collocation techniques
described previously on both regular and irregular meshes.
In the case of the Cartesian mesh we also solved using trape-

zoidal and FFTs, for comparative purposes. In all cases, the
neural activation u was initially set equal to 1 in a rectan-
gular area centred at the origin, and the recovery variable
a was set equal to 1.5 in a rectangular area shifted to the
right of this initial stimulus, thus determining the propaga-
tion of the travelling bump solution from right to left. After
spatial discretisation, we integrated the resulting system of
ODEs (see (5) in the case of collocation) for T = 250 us-
ing the built-in MATLAB routine ode45, with absolute and
relative tolerances both set to 1e−6. Figure 6 shows a trav-
elling bump solution centred on the x-axis, and moving from
right to left, for the trapezoidal, FFT and linear collocation
methods, using a regular grid on nv = 4225 nodes. As ex-
pected from our previous analysis, all three methods are in
excellent agreement, converging to the same solution up to
machine precision.

When moving to more general meshes, however, we find
that the bump solution tends to drift slightly in the y-direction
for grids with a similar number of points as the regular ones
considered above. Note that we have conducted experiments
with varying numbers of spatial grid points and have ob-
served a relationship between the time-step at which the
bump solution drifts from y = 0 and grid size nv. In par-
ticular, Figure 7 shows a solution computed on a grid con-
sisting of nv = 13000 nodes for which the aforementioned
drift is negligible for the integration times considered here.
From our earlier analysis, it is clear that the observed drift
is a manifestation of errors due to the linear rate of conver-
gence of the collocation scheme when computing the inte-
gral in (6) on a more general mesh. Importantly, and as evi-
denced in Figure 7, this result suggests that with enough grid
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points and/or computational power, we can reproduce the
same types of solutions as that obtained with FFT or trape-
zoidal methods, regardless of the underlying mesh. More-
over, early experiments suggest that deploying higher-order
polynomial approximations in our collocation scheme en-
ables us to calculate the integral in (6) more accurately with-
out such dramatic increases in mesh size, thus potentially
circumventing the need for significant increases in compu-
tational power.

3.2 Torus

In this section we deploy the MMP algorithm in order to
solve the NFM in Equation (2) on the curved surface of a
torus using both linear collocation and the trapezoidal rule

for comparison. Note that for any given triangulation of the
torus, the collocation techniques described in §2 can be de-
ployed directly to solve Equation (2); however, implemen-
tation of the trapezoidal rule requires a regular (in the ap-
propriate polar coordinate system) spatial discretisation of
the torus, which is most easily obtained by considering the
following parameterisation of the toroidal surface:

(θ ,φ) 7→

 (R+ r cosθ)cosφ

(R+ r cosθ)sinφ

r sinθ

=

 x
y
z

 . (9)

The geometrical meaning of the major curvature radius R,
the minor curvature radius r, and the angles θ and φ are
shown in Figure 8.

Importantly, the above parameterisation allows us to rewrite
Equation (2) as follows:

∂u(θ ,φ)
∂ t

=−u(θ ,φ)−a(θ ,φ)+A
∫ 2π

0

∫ 2π

0
w((θ ,φ),(θ ′,φ ′))S(u(θ ′,φ ′)−h)r(R+ r cosθ

′)dθ
′dφ
′,

τ
∂a(θ ,φ)

∂ t
= Bu(θ ,φ)−a(θ ,φ),

(10)

x

R

r

θ

y

z

φ

Fig. 8 Parameterisation of a torus by coordinates (θ ,φ)

which is in a form that enables us to apply the trapezoidal
rule directly to solve the integral part of the equation, i.e.

I(θ ,φ) =
∫ 2π

0

∫ 2π

0
w((θ ,φ),(θ ′,φ ′))S(u(θ ′,φ ′)−h)×

r(R+ r cosθ
′)dθ

′dφ
′.

Note that in the above, we have used the fact that the surface
area element for the torus is given by

dΩ(θ ,φ) = r(R+ r cosθ)dθdφ ,

which can easily be derived from the first fundamental form.
It is also worth pointing out that the above integral is not a
convolution integral and so we cannot use FFT techniques
to solve (2) on a torus, or indeed on more general surfaces.

We compared the accuracy of both linear collocation and
the trapezoidal rule by considering the integral in (2) for the

case when Ω = T2, i.e. the closed surface of a torus, with
minor radius r = 2 and major radius R = 4.5. As with our
previous analysis, we set the unknown function u(θ ′,φ ′) =
w((0,0),(θ ′,φ ′)), that is the connectivity kernel given in (3),
with the distance function d calculated numerically using
the MMP algorithm. Starting from a regular, initial grid of
N0 = 162 nodes, obtained by applying the spatial discretisa-
tion

θi = θ0 + iδθ , i = 0,1, . . . ,8,

φ j = φ0 + jδφ , j = 0,1, . . . ,17,
(11)

we solved the integral on a sequence of increasingly fine
meshes, in an identical manner to that described in Section
3.1. A regular triangulation was constructed from the rectan-
gular tesselation (see, for example, Figure 8) resulting from
the aforementioned grid by setting each grid point as a ver-
tex, and subdividing each rectangular element into two trian-
gles. The results are displayed in Figure 9. In particular, we
see that the orders of convergence are linear for the piece-
wise linear collocation method and quadratic for the trape-
zoidal rule.

We tracked the evolution of the neural activation u, which
was initially set equal to two in a rectangular area centered
on θ = φ = 0, whilst the recovery variable a was set equal
to 1.5 in a rectangular area shifted to the right in the direc-
tion of the azimuthal angle φ , relative to the initial stimulus
u. Equation (2) was first solved on a regular triangulation as
described above. The ODEs resulting from this spatial dis-
cretisation (see Equation (5) in the case of linear collocation)
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Fig. 9 A plot of the error versus grid size when computing the integral
in (2) on a regular polar coordinate grid of the torus using the trape-
zoidal rule (dashed line) and on a triangulation whose nodes coincide
with the same grid using linear collocation (solid line)

were then solved for T = 400 using the built-in MATLAB
routine ode45, with absolute and relative tolerences both set
to 1e−6. Figure 10 shows a stable travelling bump solution
of Equation (2) propagating clockwise on the outside of the
torus (i.e. θ = 0), computed by solving (2) using colloca-
tion on a regular grid of nv = 8256 nodes. Note that similar
results were obtained using the trapezoidal method.

In addition to the above experiments, we also solved
Equation (2) on a general triangulation of the torus with
nv = 11094 nodes, obtained using the DistMesh package –
an illustration of which is shown in Figure 11. Importantly,
we were able to reproduce the travelling bump solution dis-
played in Figure 10 on this more general mesh using linear
collocation. Recall that the standard product trapezoidal rule
deployed in our investigations requires a domain formed via
a tensor product of intervals and so is not applicable in this
more general case. We note, however, that it is possible to
devise quadrature rules (including the trapezoidal scheme)
on general triangulated domains, but this lies outside the
scope of the current work (the interested reader should see,
for example, (Rathsfeld 2000; Carstairs and Miller 2017)).
We note that to attain an accurate solution of (2) on an un-
structured mesh using planar-triangle elements requires a
finer discretisation (an increase of some 35% in the number
of nodes needed to solve (2) on an unstructured as opposed
to structured mesh), thus resulting in associated increases
in computational resources. However, preliminary investiga-
tions suggest that considerable gains in computation can be
made by increasing the order of the basis functions used (as
suggested in the planar case in §3.1) in tandem with a more
accurate representation of the geometry of the problem by
deploying curved elements (Bardhan et al 2007).

The travelling bump solutions considered in this paper
propagate at constant speed along the geodesic curve given
by the outer equator of the torus, and perhaps more impor-
tantly along trajectories of constant curvature in the direc-
tion of travel. However, we have also considered travelling
bump solutions that propagate along non-geodesic trajecto-
ries, by considering different initial choices of the recovery
variable, a. Figure 12(a) shows the path of such a solution
as it traverses the torus. In particular, we find that solutions
following non-geodesic paths travel with spatially variable
speed. Moreover, the region of greatest negative curvature
along the inner equator acts as a barrier, in the sense that
solutions travelling along non-geodesic paths are unable to
pass through this region, and instead we observe oscillatory-
like behaviour as the bump solution repeatedly crosses the
outer equator. This behaviour is further evidenced in Figure
12(b), in which we plot both the speed of the bump solution,
as well as the Gaussian curvature as functions of the posi-
tion along the trajectory plotted in Figure 12(a). We have
also considered solutions passing through so-called merid-
ian geodesics, i.e. paths of fixed azimuthal angle, and found
that such bump solutions travel at constant speed and pass
through the inner equator unhindered (results not shown).

3.3 Cortical surface of a rat

Spatial coordinates for the cortical surface of the rat were
obtained via the CARET software package (Van Essen 2012)
and processed using the CARET MATLAB toolbox. Re-
stricting to the left hemisphere, we deploy the triangula-
tion of the rat cortex provided by the CARET software, with
nodes positioned on the nv = 9623 available data points (see
Figure 13). We tracked the evolution of neural activity u,
which was initially set equal to two in a small region (1% of
the total nodes in the mesh) surrounding a node selected at
random, whilst the recovery variable a was set equal to 1.5 in
an equivalently sized, partially overlapping region of nodes.
Note that the initial position of the recovery variable deter-
mines the direction of propagation and so we repeated this
process a number of times in order to gain insight into how
both the geometry, as well as the site, and form, of activity
initiation, influences propagation travelling patterns of the
localised bump solutions admitted by Equation (2). As with
our earlier experiments, the ODEs in (5) were solved for
T = 400 using the built-in MATLAB routine ode45, with
absolute and relative tolerences both set to 1e−6.

As an illustration, Figure 14 shows the progression of a
typical stable bump solution of (2), for several selected time
points. Importantly, we find regardless of the initial direc-
tion of propagation that solutions tend to one of two steady
states: either they settle on the large folded region on the
underside of the rat brain (see the panel in bottom right cor-
ner of Figure 14), or they get stuck in the transition between
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Fig. 10 Snapshots of a travelling bump solution propagating clockwise on a torus with minor curvature radius r = 2.5 and major curvature radius
R = 4.5 computed by solving equation (10) using linear collocation
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Fig. 11 Illustration of a general triangulation of the torus generated
using the DistMesh package (Persson and Strang 2004)

the main body of the brain and the tail-like structure to the
rear – see Figure S1 in the supplementary material for an
example of such a solution. We remark that unlike the solu-
tions obtained on the torus, all solutions obtained for the rat
brain traverse regions of both positive and negative Gaus-
sian curvature, and as a result of this variation in curvature,
all observed solutions travelled along non-geodesic trajecto-
ries with spatially-variable speed. Crucially, this is in direct
contrast to solutions obtained on the flat, periodic square, as
well those solutions on the torus following geodesic trajec-
tories of constant curvature, both of which travelled at con-
stant speed. Note that preliminary studies in this direction
suggest that both the propagation path and the variation in

speed of these solutions is largely explained by the gradient
in the Gaussian curvature of the surface under consideration.
These matters shall be further investigated in a follow-on
manuscript that is currently under preparation.

4 Discussion

In this paper, we have presented a computational technique
for solving neural field models (NFM) on curved geome-
tries and investigated the influence of the underlying mesh
on these solutions. More specifically, we compared numer-
ical simulations of the propagation of neural activity within
three different geometries: a flat periodic square, the surface
of a torus and the cortical surface of the rat brain. Note that
to the best of our knowledge this is the first time that a NFM
such as Equation (1) has been solved on a curved geometry
for which no analytic formulae for geodesic distance exists.
Importantly, in the case of the periodic square, we found
that collocation techniques are capable of replicating travel-
ling bump solutions found using more standard techniques,
such as Fourier based methods or the trapezoidal rule, us-
ing general, non-Cartesian meshes, more akin to the types
of meshes derived from modern neuroimaging studies. This
result, coupled with efficient numerical techniques for com-
puting geodesic distances on triangulated surfaces, allows
us to extend these algorithms with confidence to determine
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Fig. 12 (a) The tracked path of a bump solution of (2) following a non-geodesic trajectory on the torus. Toroidal regions of maximum (positive)
curvature are coloured yellow while regions of minimum (negative) curvature are coloured blue. (b) The curvature (red line) and speed (blue line)
of the bump solution along the trajectroy shown in (a)
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Fig. 13 A triangulation of the left hemisphere of the rat cortex

solutions of neural field models on curved geometries, such
as the torus and rat brain considered herein.

A key feature of this work is that we deploy neuroimag-
ing data from the left hemisphere of the rat brain, along-
side efficient numerical procedures for computing geodesic
distances, in order to study the behaviour of localised spot-
like solutions of a non-local neural field model. Importantly,
preliminary results suggest that cortical geometry influences
profoundly both the propagation speed and path of such lo-
calised bump solutions, thus leading us to conclude that stud-
ies that do not account for the folded structure of the cortex
risk simplifying neural activation dynamics in a potentially
significant way. Note that we limit the current study on com-
parisons of activity propagation on the brain surface to short-
range connections between, say, cortical columns; however,
our approach is capable of including long-range white mat-
ter connections via the choice of a suitable, possibly experi-
mentally defined, connectivity kernel. Indeed, incorporating
macro-scale (white matter) connectivity within the NFM,
thus more accurately reflecting neural mechanisms of rel-

evance to bumps, waves and more general patterns of neural
activity in the brain, is an important area of future research.

A number of recent studies (Jirsa et al 2001; Kroos et al
2016) have investigated the relations of cortical geometry
to the nucleation and propagation of waves. However, such
studies typically rely on special choices of the connectivity
kernel in order to obtain a PDE formulation of the NFM,
thus ignoring important physiological details, such as the
role of cortical inhibition, an important and well-known mech-
anism for controlling the propagation of neural activity. Al-
though such studies have reported significant differences in
wave propagation properties due to geometric effects, the
ommission of key inhibitory mechanisms means that fea-
tures of relevance to both healthy and pathological spread-
ing of neural activity are potentially missed. One way to test
this, would be to repeat the analysis of Jirsa et al (2001), in
which the authors attempt to replicate observed EEG/MEG
activity patterns on a human cortical surface using a NFM
with a homogeneous connectivity function, to see whether
we can better recreate observed neural activity by deploying
the full integral model, including both short-range excitatory
as well as longer range inhibitory connections. In this way
we would hope to highlight the influence of cortical inhibi-
tion on propagation dynamics, in isolation.

To conclude, our work is significant for a number of
reasons. Firstly, we introduce a novel numerical procedure
for integrating NFMs on arbitrary two-dimensional surfaces,
thus opening up the possibility of studying more physiolog-
cally realistic systems, including, for example, accurate cor-
tical geometries and/or connectivity kernels displaying re-
gional heterogeneity. And secondly, preliminary results on
the curved surface of the rat brain suggest that Gaussian
curvature has a significant impact on both the speed and
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Fig. 14 Snapshots of bump solutions of (2) propagating on the surface of the rat cortex

path of propagating neural activity, and so an important open
question is to determine to what extent the folded structure
of the cortex influences mechanisms describing the interac-
tion between complex wave dynamics and the observed fre-
quencies of emergent brain rhythms. Future work shall focus
on determining the influence of curvature upon the nucle-
ation and propagation of the spatially localised bump-like
solutions observed in this study, using numerical bifurcation
techniques, as well as considering more complicated NFMs
that include, for example, time delays, or more general con-
nectivity kernels that incorporate experimental data thus bet-
ter reflecting brain physiology.
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