11 research outputs found
Glacial history of the Åsgardfonna Ice Cap, NE Spitsbergen, since the last glaciation
The response of glaciers and ice caps to past climate change provides important insight into how they will react to ongoing and future global warming. In Svalbard, the Holocene glacial history has been studied for many cirque and valley glaciers. However, little is known about how the larger ice caps in Svalbard responded to Late Glacial and Holocene climate changes. Here we use lake sediment cores and geophysical data from Femmilsjøen, one of Svalbard’s largest lakes, to reconstruct the glacial history of the Åsgardfonna Ice Cap since the last deglaciation. We find that Femmilsjøen potentially deglaciated prior to 16.1 ± 0.3 cal ka BP and became isolated from the marine environment between 11.7 ± 0.3 to 11.3 ± 0.2 cal ka BP. Glacial meltwater runoff was absent between 10.1 ± 0.4 and 3.2 ± 0.2 cal ka BP, indicating that Åsgardfonna was greatly reduced or disappeared in the Early and Middle Holocene. Deposition of glacial-meltwater sediments re-commenced in Femmilsjøen at c. 3.2 ± 0.2 cal ka BP, indicating glacier re-growth in the Femmilsjøen catchment and the onset of the Neoglacial. The glacier(s) in the Femmilsjøen catchment area reached sizes no smaller than their modern extents already at c. 2.1 ± 0.7 cal ka BP. Our results suggest that larger Svalbard ice caps such as Åsgardfonna are very sensitive to climate changes and probably melted completely during the Holocene Thermal Maximum. Such information can be used as important constraints in future ice-cap simulations
How to map submerged Stone Age sites using acoustics (some experimental results)
A central problem for maritime archaeology has been to find survey methods that facilitate efficient and precise mapping of Stone Age sites on the seabed down to the lowest sea level (approximately 140 m) during glacial periods, as well as sites embedded in sea-floor sediments. As predictive landscape modelling has proved to be inadequate for this task, a different approach based on direct detection is required. The observation of an acoustic phenomenon associated with man-made flint debitage but not naturally cracked pieces of flint has opened a window for development of an alternative and efficient direct mapping method. This paper discusses the development of the idea, as well as experimental documentation of the principle on which it is based. It includes a preliminary analysis of how far away on each side of the transducer flint debitage emits an acoustic response, and consequently the required distance between sailing lines for a comprehensive survey to be undertaken at a specific depth
Recommended from our members
Glacial sedimentation, fluxes and erosion rates associated with ice retreat in Petermann Fjord and Nares Strait, north-west Greenland
Petermann Fjord is a deep (>1000 m) fjord that incises the coastline of north-west Greenland and was carved by an expanded Petermann Glacier, one of the six largest outlet glaciers draining the modern Greenland Ice Sheet (GrIS). Between 5 and 70 m of unconsolidated glacigenic material infills in the fjord and adjacent Nares Strait, deposited as the Petermann and Nares Strait ice streams retreated through the area after the Last Glacial Maximum. We have investigated the deglacial deposits using seismic stratigraphic techniques and have correlated our results with high-resolution bathymetric data and core lithofacies. We identify six seismo-acoustic facies in more than 3500 line kilometres of sub-bottom and seismic-reflection profiles throughout the fjord, Hall Basin and Kennedy Channel. Seismo-acoustic facies relate to bedrock or till surfaces (Facies I), subglacial deposition (Facies II), deposition from meltwater plumes and icebergs in quiescent glacimarine conditions (Facies III, IV), deposition at grounded ice margins during stillstands in retreat (grounding-zone wedges; Facies V) and the redeposition of material downslope (Facies IV). These sediment units represent the total volume of glacial sediment delivered to the mapped marine environment during retreat. We calculate a glacial sediment flux for the former Petermann ice stream as 1080–1420 m3 a−1 per metre of ice stream width and an average deglacial erosion rate for the basin of 0.29–0.34 mm a−1. Our deglacial erosion rates are consistent with results from Antarctic Peninsula fjord systems but are several times lower than values for other modern GrIS catchments. This difference is attributed to fact that large volumes of surface water do not access the bed in the Petermann system, and we conclude that glacial erosion is limited to areas overridden by streaming ice in this large outlet glacier setting. Erosion rates are also presented for two phases of ice retreat and confirm that there is significant variation in rates over a glacial–deglacial transition. Our new glacial sediment fluxes and erosion rates show that the Petermann ice stream was approximately as efficient as the palaeo-Jakobshavn Isbræ at eroding, transporting and delivering sediment to its margin during early deglaciation
Detecting human-knapped flint with marine high-resolution reflection seismics: A preliminary study of new possibilities for subsea mapping of submerged stone age sites
Seismic high-resolution Chirp profiles from the well-documented submerged Stone Age settlement Atlit-Yam, located off Israel’s Carmel coast, display systematic disturbances within the water column not related to sea-floor cavitation, vegetation, fish shoals, gas or salinity/temperature differences, where flint debitage from the Stone Age site had been verified archaeologically. A preliminary series of controlled experiments, using identical acquisition parameters, strongly indicate that human-knapped flint debitage lying on the sea floor, or embedded within its sediments, produces similar significant responses in the water column. Flint pieces cracked naturally by thermal or geological processes appear not to do so. Laboratory experiments, finite element modelling and controlled experiments conducted in open water on the response to broad-spectrum acoustic signals point to an excited resonance response within human-knapped flint even for sediment embedded debitage, with acoustic signals within the 2–20 kHz interval. The disturbances observed in the water column on the seismic profiles recorded at Atlit-Yam are, therefore, based on these results, interpreted as resonance from human-knapped flint debitage covered by up to 1.5 m of sand. Such a principle, if substantiated by further research, should facilitate efficient and precise mapping of submerged Stone Age sites.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
Glacial history of the Åsgardfonna Ice Cap, NE Spitsbergen, since the last glaciation
© 2020 The Author(s) The response of glaciers and ice caps to past climate change provides important insight into how they will react to ongoing and future global warming. In Svalbard, the Holocene glacial history has been studied for many cirque and valley glaciers. However, little is known about how the larger ice caps in Svalbard responded to Late Glacial and Holocene climate changes. Here we use lake sediment cores and geophysical data from Femmilsjøen, one of Svalbard\u27s largest lakes, to reconstruct the glacial history of the Åsgardfonna Ice Cap since the last deglaciation. We find that Femmilsjøen potentially deglaciated prior to 16.1 ± 0.3 cal ka BP and became isolated from the marine environment between 11.7 ± 0.3 to 11.3 ± 0.2 cal ka BP. Glacial meltwater runoff was absent between 10.1 ± 0.4 and 3.2 ± 0.2 cal ka BP, indicating that Åsgardfonna was greatly reduced or disappeared in the Early and Middle Holocene. Deposition of glacial-meltwater sediments re-commenced in Femmilsjøen at c. 3.2 ± 0.2 cal ka BP, indicating glacier re-growth in the Femmilsjøen catchment and the onset of the Neoglacial. The glacier(s) in the Femmilsjøen catchment area reached sizes no smaller than their modern extents already at c. 2.1 ± 0.7 cal ka BP. Our results suggest that larger Svalbard ice caps such as Åsgardfonna are very sensitive to climate changes and probably melted completely during the Holocene Thermal Maximum. Such information can be used as important constraints in future ice-cap simulations