223 research outputs found

    Solidification of Al-Sn-Cu based immiscible alloys under intense shearing

    Get PDF
    The official published version of the Article can be accessed from the link below - Copyright @ 2009 The Minerals, Metals & Materials Society and ASM InternationalThe growing importance of Al-Sn based alloys as materials for engineering applications necessitates the development of uniform microstructures with improved performance. Guided by the recently thermodynamically assessed Al-Sn-Cu system, two model immiscible alloys, Al-45Sn-10Cu and Al-20Sn-10Cu, were selected to investigate the effects of intensive melt shearing provided by the novel melt conditioning by advanced shear technology (MCAST) unit on the uniform dispersion of the soft Sn phase in a hard Al matrix. Our experimental results have confirmed that intensive melt shearing is an effective way to achieve fine and uniform dispersion of the soft phase without macro-demixing, and that such dispersed microstructure can be further refined in alloys with precipitation of the primary Al phase prior to the demixing reaction. In addition, it was found that melt shearing at 200 rpm and 60 seconds will be adequate to produce fine and uniform dispersion of the Sn phase, and that higher shearing speed and prolonged shearing time can only achieve minor further refinement.This work is funded by the EPSRC and DT

    Evolution of Th2 responses : Characterization of IL-4/13 in sea bass (Dicentrarchus labrax L.) and studies of expression and biological activity

    Get PDF
    Acknowledgements This research was funded by the European Commission under the 7th Framework Programme for Research and Technological Development (FP7) of the European Union (Grant Agreement 311993 TARGETFISH). T.W. received funding from the MASTS pooling initiative (The Marine Alliance for Science and Technology for Scotland). MASTS is funded by the Scottish Funding Council (grant reference number HR09011) and contributing institutions.Peer reviewedPublisher PD

    Alternatively activated dendritic cells regulate CD4+ T-cell polarization in vitro and in vivo

    Get PDF
    Interleukin-4 is a cytokine widely known for its role in CD4(+) T cell polarization and its ability to alternatively activate macrophage populations. In contrast, the impact of IL-4 on the activation and function of dendritic cells (DCs) is poorly understood. We report here that DCs respond to IL-4 both in vitro and in vivo by expression of multiple alternative activation markers with a different expression pattern to that of macrophages. We further demonstrate a central role for DC IL-4Rα expression in the optimal induction of IFNγ responses in vivo in both Th1 and Th2 settings, through a feedback loop in which IL-4 promotes DC secretion of IL-12. Finally, we reveal a central role for RELMα during T-cell priming, establishing that its expression by DCs is critical for optimal IL-10 and IL-13 promotion in vitro and in vivo. Together, these data highlight the significant impact that IL-4 and RELMα can have on DC activation and function in the context of either bacterial or helminth pathogens

    Siglec-F-dependent negative regulation of allergen-induced eosinophilia depends critically on the experimental model

    Get PDF
    Siglec-8 and siglec-F are paralogous membrane proteins expressed on human and murine eosinophils respectively. They bind similar sialylated and sulphated glycans and mediate eosinophil apoptosis when cross-linked with antibodies or glycan ligands. In models of allergic eosinophilic airway inflammation, siglec-F was shown previously to be important for negatively regulating eosinophilia. It was proposed that this was due to siglec-F-dependent apoptosis, triggered via engagement with ligands that are upregulated on bronchial epithelium. Our aim was to further investigate the functions of siglec-F by comparing two commonly used models of ovalbumin-induced airway inflammation that differ in the dose and route of administration of ovalbumin. In confirmation of published results, siglec-F-deficient mice had enhanced lung tissue eosinophilia in response to intranasal ovalbumin delivered every other day. However, following aerosolised ovalbumin delivered daily, there was no influence of siglec-F deficiency on lung eosinophilia. Expression of siglec-F ligands in lung tissues was similar in both models of allergen induced inflammation. These data demonstrate that siglec-F-dependent regulation of eosinophilia is subtle and depends critically on the model used. The findings also indicate that mechanisms other than ligand-induced apoptosis may be important in siglec-F-dependent suppression of eosinophilia

    Multiparametric Immunoimaging Maps Inflammatory Signatures in Murine Myocardial Infarction Models.

    Get PDF
    In the past 2 decades, research on atherosclerotic cardiovascular disease has uncovered inflammation to be a key driver of the pathophysiological process. A pressing need therefore exists to quantitatively and longitudinally probe inflammation, in preclinical models and in cardiovascular disease patients, ideally using non-invasive methods and at multiple levels. Here, we developed and employed in vivo multiparametric imaging approaches to investigate the immune response following myocardial infarction. The myocardial infarction models encompassed either transient or permanent left anterior descending coronary artery occlusion in C57BL/6 and Apoe-/-mice. We performed nanotracer-based fluorine magnetic resonance imaging and positron emission tomography (PET) imaging using a CD11b-specific nanobody and a C-C motif chemokine receptor 2-binding probe. We found that immune cell influx in the infarct was more pronounced in the permanent occlusion model. Further, using 18F-fluorothymidine and 18F-fluorodeoxyglucose PET, we detected increased hematopoietic activity after myocardial infarction, with no difference between the models. Finally, we observed persistent systemic inflammation and exacerbated atherosclerosis in Apoe-/- mice, regardless of which infarction model was used. Taken together, we showed the strengths and capabilities of multiparametric imaging in detecting inflammatory activity in cardiovascular disease, which augments the development of clinical readouts.This work was supported by National Institute of Health grants R01HL143814 (to Dr Fayad), P01HL131478 (Drs Fayad and Mulder), P41EB025815 (Drs Liu and Gropler ), R35HL145212 (Dr Liu), and R35HL139598 (Dr Nahrendorf) and award K22CA226040 (Dr Rashidian). This work was also supported by an Innovation Research Fund Basic Research Award from the Dana-Farber Cancer Institute (Dr Rashidian). Dr Maier was supported by Deutsche Forschungsgemeinschaft grants (MA 7059/1 and MA 7059/3-1) and is part of SFB1425 funded by the Deutsche Forschungsgemeinschaft (project no. 422681845). All other authors have reported that they have no relationships relevant to the contents of this paper to disclose.S

    Resolving sepsis-induced immunoparalysis via trained immunity by targeting interleukin-4 to myeloid cells.

    Get PDF
    Immunoparalysis is a compensatory and persistent anti-inflammatory response to trauma, sepsis or another serious insult, which increases the risk of opportunistic infections, morbidity and mortality. Here, we show that in cultured primary human monocytes, interleukin-4 (IL4) inhibits acute inflammation, while simultaneously inducing a long-lasting innate immune memory named trained immunity. To take advantage of this paradoxical IL4 feature in vivo, we developed a fusion protein of apolipoprotein A1 (apoA1) and IL4, which integrates into a lipid nanoparticle. In mice and non-human primates, an intravenously injected apoA1-IL4-embedding nanoparticle targets myeloid-cell-rich haematopoietic organs, in particular, the spleen and bone marrow. We subsequently demonstrate that IL4 nanotherapy resolved immunoparalysis in mice with lipopolysaccharide-induced hyperinflammation, as well as in ex vivo human sepsis models and in experimental endotoxemia. Our findings support the translational development of nanoparticle formulations of apoA1-IL4 for the treatment of patients with sepsis at risk of immunoparalysis-induced complications.We thank M. Jaeger (Radboudumc) for kindly providing flourescein isothiocyanate-labelled Candida albicans. D. Williams (East Tennessee State University) provided the β-glucan we used in our initial experiments. H. Lemmers (Radboudumc) kindly prepared the purified lipopolysaccharide used for stimulation of primary human monocytes and macrophages. Part of the figures were prepared using (among other software) Biorender.com. B.N. is supported by a National Health and Medical Research Council (Australia) Investigator Grant (APP1173314). This work was supported by National Institutes of Health grants R01 HL144072, R01 CA220234 and P01 HL131478, as well as a Vici grant from the Dutch Research Council NWO and an ERC Advanced Grant (all to W.J.M.M.). M.G.N. was supported by a Spinoza grant from Dutch Research Council NWO and an ERC Advanced Grant (#833247).S

    Metastable monotectic phase separation in Co–Cu alloys

    Get PDF
    The liquid phase separation behaviour of metastable monotectic Co–Cu alloys was investigated as a function of cooling rate using a 6.5 m drop-tube facility. A range of liquid phase separated morphologies were observed including stable two-layer core–shell, evolving core–shell and dendritic structures. It was found that in the core–shell structures the core was always in the higher melting point (Co-rich) phase, irrespective of the core and shell volume fraction. In Cu–50 at% Co alloy, high cooling rates were observed to yield two episodes of liquid phase separation, corresponding to binodal, followed by spinodal decomposition. The resulting structure comprised a core–shell structure in which the Co-rich core contained a very fine dispersion of Cu-rich particles with a Cu-rich shell which may, or may not, contain a similar dispersion of Co-rich particles
    corecore