53 research outputs found

    Ratification of the Ramsar convention and sustainable wetlands management : situation analysis of the Kilombero Valley wetlands in Tanzania

    Get PDF
    Journal of Agricultural Extension and Rural Development, 2011; 3 (9):153-164In recent years, the Kilombero Valley wetlands in Tanzania was designated and added to the Ramsar convention’s list in an attempt to improve its social, economic and environmental values. This study, carried out in selected sites within the Kilombero Valley wetlands, uses a participatory approach to analyze the existing situation and to reflect upon the quest for sustainable management as defined by Ramsar convention. The empirical findings reveal that the Kilombero Valley wetlands are an important source of livelihood for 87% of the dwellers in the area. Moreover, the wetlands also contribute significantly to welfare outside the area as 70% of the country’s hydropower depends on water regulation functions of this wetland and they are the source of a diverse number of streams, adding to their biological and ecological value. The study furthermore revealed that the current institutional arrangement for the site threaten the sustainability of the wetlands, despite its addition to the Ramsar convention’s list. A more detailed study on appropriate incentive mechanisms for the sustainable management of the wetlands, which would help to internalize the negative effects created by the users, is recommended

    Exploring the future land use-biodiversity-climate nexus in East Africa: an application of participatory scenario analysis

    Get PDF
    Climate change and land-use-land-cover change (LULCC) are expected to have major impacts on global biodiversity. In highly diverse tropical moist forests, future biodiversity trajectories will also depend on political and societal will to undertake the changes needed to reduce those impacts. We present a framework to build participatory spatially-explicit scenarios that can be used to analyse the biodiversity-climate-land-change tradeoffs, which we applied at different scales in East Africa. In Tanzania, under the business-as-usual pattern of economic growth, the Eastern Arc Mountains forests and biodiversity will be heavily impacted on, with increasing pressure on protected areas. Increasing variability of rainfall and temperature are likely to impact on where the LULCC are going to be, with the mountains likely to be refuges that are even more important for local communities. That may intensify impacts on biodiversity. In Taita Hills (Kenya) and Jimma Highlands (Ethiopia), stakeholders expected that adaptation interventions to climate change would generally improve biodiversity state. Preliminary data on birds community diversity in Taita Hills showed that though agroforestry system supports higher diversity than natural forest, species richness of rarer forest specialists remained highest within natural forests. Anticipating future conservation and agriculture interaction under climate change may contribute to set spatial priorities for intervention sites. Further investigations are required that could benefit from integrating local stakeholders’ perceptions and visions for the future

    From local scenarios to national maps : a participatory framework for envisioning the future of Tanzania

    Get PDF
    Tackling societal and environmental challenges requires new approaches that connect top-down global oversight with bottom-up subnational knowledge. We present a novel framework for participatory development of spatially explicit scenarios at national scale that model socioeconomic and environmental dynamics by reconciling local stakeholder perspectives and national spatial data. We illustrate results generated by this approach and evaluate its potential to contribute to a greater understanding of the relationship between development pathways and sustainability. Using the lens of land use and land cover changes, and engaging 240 stakeholders representing subnational (seven forest management zones) and the national level, we applied the framework to assess alternative development strategies in the Tanzania mainland to the year 2025, under either a business as usual or a green development scenario. In the business as usual scenario, no productivity gain is expected, cultivated land expands by ~ 2% per year (up to 88,808 km²), with large impacts on woodlands and wetlands. Despite legal protection, encroachment of natural forest occurs along reserve borders. Additional wood demand leads to degradation, i.e., loss of tree cover and biomass, up to 80,426 km² of wooded land. The alternative green economy scenario envisages decreasing degradation and deforestation with increasing productivity (+10%) and implementation of payment for ecosystem service schemes. In this scenario, cropland expands by 44,132 km² and the additional degradation is limited to 35,778 km². This scenario development framework captures perspectives and knowledge across a diverse range of stakeholders and regions. Although further effort is required to extend its applicability, improve users’ equity, and reduce costs the resulting spatial outputs can be used to inform national level planning and policy implementation associated with sustainable development, especially the REDD+ climate mitigation strategy

    The effects of seaward distance on above and below ground carbon stocks in estuarine mangrove ecosystems

    Get PDF
    Mangrove forests have gained recognition for their potential role in climate change mitigation due to carbon sequestration in live trees, and carbon storage in the sediments trapped by mangrove tree roots and pneumatophores. Africa hosts about 19% of the world’s mangroves, yet relatively few studies have examined the carbon stocks of African mangroves. The available studies report considerable differences among sites and amongst the different pools of carbon stocks. None considered the effects of seaward distance. We present details of AGC and SOC carbon stocks for Lindi in Tanzania, and focus on how these values differ with increasing seaward distance and, how our results compare to those reported elsewhere across Africa

    Scenarios of land use and land cover change and their multiple impacts on natural capital in Tanzania

    Get PDF
    REDD+ (reducing emissions from deforestation, and forest degradation, plus the conservation of forest carbon stocks, sustainable management of forests, and enhancement of forest carbon stocks, in developing countries) requires information on land use and land cover changes (LULCC) and carbon emissions trends from the past to the present and into the future. Here we use the results of participatory scenario development in Tanzania, to assess the potential interacting impacts on carbon stock, biodiversity and water yield of alternative scenarios where REDD+ is effectively implemented or not by 2025, the green economy (GE) and the business as usual (BAU) respectively. Under the BAU scenario, land use and land cover changes causes 296 MtC national stock loss by 2025, reduces the extent of suitable habitats for endemic and rare species, mainly in encroached protected mountain forests, and produce changes of water yields. In the GE scenario, national stock loss decreases to 133 MtC. In this scenario, consistent LULCC impacts occur within small forest patches with high carbon density, water catchment capacity and biodiversity richness. Opportunities for maximising carbon emissions reductions nationally are largely related to sustainable woodland management but also contain trade-offs with biodiversity conservation and changes in water availability

    Detecting and predicting forest degradation: A comparison of ground surveys and remote sensing in Tanzanian forests

    Get PDF
    Funder: Critical Ecosystem Partnership Fund; Id: http://dx.doi.org/10.13039/100013724Funder: Global Environment Facility; Id: http://dx.doi.org/10.13039/100011150Funder: Danish International Development Agency; Id: http://dx.doi.org/10.13039/501100011054Funder: Scottish Government’s Rural and Environment Science and Analytical Services DivisionFunder: Finnish International Development AgencyFunder: Leverhulme Trust; Id: http://dx.doi.org/10.13039/501100000275Societal Impact Statement: Large areas of tropical forest are degraded. While global tree cover is being mapped with increasing accuracy from space, much less is known about the quality of that tree cover. Here we present a field protocol for rapid assessments of forest condition. Using extensive field data from Tanzania, we show that a focus on remotely‐sensed deforestation would not detect significant reductions in forest quality. Radar‐based remote sensing of degradation had good agreement with the ground data, but the ground surveys provided more insights into the nature and drivers of degradation. We recommend the combined use of rapid field assessments and remote sensing to provide an early warning, and to allow timely and appropriately targeted conservation and policy responses. Summary: Tropical forest degradation is widely recognised as a driver of biodiversity loss and a major source of carbon emissions. However, in contrast to deforestation, more gradual changes from degradation are challenging to detect, quantify and monitor. Here, we present a field protocol for rapid, area‐standardised quantifications of forest condition, which can also be implemented by non‐specialists. Using the example of threatened high‐biodiversity forests in Tanzania, we analyse and predict degradation based on this method. We also compare the field data to optical and radar remote‐sensing datasets, thereby conducting a large‐scale, independent test of the ability of these products to map degradation in East Africa from space. Our field data consist of 551 ‘degradation’ transects collected between 1996 and 2010, covering >600 ha across 86 forests in the Eastern Arc Mountains and coastal forests. Degradation was widespread, with over one‐third of the study forests—mostly protected areas—having more than 10% of their trees cut. Commonly used optical remote‐sensing maps of complete tree cover loss only detected severe impacts (≥25% of trees cut), that is, a focus on remotely‐sensed deforestation would have significantly underestimated carbon emissions and declines in forest quality. Radar‐based maps detected even low impacts (<5% of trees cut) in ~90% of cases. The field data additionally differentiated types and drivers of harvesting, with spatial patterns suggesting that logging and charcoal production were mainly driven by demand from major cities. Rapid degradation surveys and radar remote sensing can provide an early warning and guide appropriate conservation and policy responses. This is particularly important in areas where forest degradation is more widespread than deforestation, such as in eastern and southern Africa

    Consistent patterns of common species across tropical tree communities

    Get PDF
    Trees structure the Earth’s most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1,2,3,4,5,6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth’s 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world’s most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees.Publisher PDFPeer reviewe
    corecore