74 research outputs found

    The genome sequence of the riband wave, Idaea aversata (Linnaeus, 1758)

    Get PDF
    We present a genome assembly from an individual male Idaea aversata (the Riband Wave; Arthropoda; Insecta; Lepidoptera; Geometridae). The genome sequence is 437 megabases in span. The whole assembly is scaffolded into 30 chromosomal pseudomolecules, including the assembled Z sex chromosome. The mitochondrial genome has also been assembled and is 17.5 kilobases in length. Gene annotation of this assembly on Ensembl identified 10,165 protein coding genes

    The genome sequence of the small emerald, Hemistola chrysoprasaria (Esper, 1795)

    Get PDF
    We present a genome assembly from an individual male Hemistola chrysoprasaria (the Small Emerald; Arthropoda; Insecta; Lepidoptera; Geometridae). The genome sequence is 438.2 megabases in span. Most of the assembly is scaffolded into 30 chromosomal pseudomolecules, including the Z sex chromosome. The mitochondrial genome has also been assembled and is 15.63 kilobases in length. Gene annotation of this assembly on Ensembl identified 17,512 protein coding genes

    The genome sequence of the common pug, Eupithecia vulgata (Haworth, 1809)

    Get PDF
    We present a genome assembly from an individual male Eupithecia vulgata (the Common Pug; Arthropoda; Insecta; Lepidoptera; Geometridae). The genome sequence is 454.7 megabases in span. Most of the assembly is scaffolded into 31 chromosomal pseudomolecules, including the assembled Z sex chromosome. The mitochondrial genome has also been assembled and is 17.1 kilobases in length

    The genome sequence of the six-striped rustic, Xestia sexstrigata (Haworth, 1809)

    Get PDF
    We present a genome assembly from an individual female Xestia sexstrigata (the Six-striped Rustic; Arthropoda; Insecta; Lepidoptera; Noctuidae). The genome sequence is 638.3 megabases in span. Most of the assembly is scaffolded into 32 chromosomal pseudomolecules, including the W and Z sex chromosomes. The mitochondrial genome has also been assembled and is 15.36 kilobases in length. Gene annotation of this assembly on Ensembl identified 15,104 protein coding genes

    Design, manufacture, and evaluation of prototype telescope windows for use in low-vision aids.

    Get PDF
    Pixellated Optics, a class of optical devices which preserve phase front continuity only over small sub areas of the device, allow for a range of uses that would not otherwise be possible. One potential use is as Low Vision Aids (LVAs), where they are hoped to combine the function and performance of existing devices with the size and comfort of conventional eyewear. For these devices a Generalised Confocal Lenslet Array (GCLA) is designed to magnify object space, creating the effect of traditional refracting telescope within a thin, planar device. By creating a device that is appreciably thinner than existing LVA telescopes it is hoped that the comfort for the wearer will be increased. We have developed a series of prototype GLCA-based devices to examine their real-world performance, focussing on the resolution, magnification and clarity of image attainable through the devices. It is hoped that these will form the basis for a future LVA devices. This development has required novel manufacturing techniques and a phased development approach centred on maximising performance. Presented here will be an overview of the development so far, alongside the performance of the latest devices

    When one phenotype is not enough: divergent evolutionary trajectories govern venom variation in a widespread rattlesnake species

    Get PDF
    Artículo 10 páginas, 3 figuras 1 tablaUnderstanding the origin and maintenance of phenotypic variation, particularly across a continuous spatial distribution, represents a key challenge in evolutionary biology. For this, animal venoms represent ideal study systems: they are complex, variable, yet easily quantifiable molecular phenotypes with a clear function. Rattlesnakes display tremendous variation in their venom composition, mostly through strongly dichotomous venom strategies, which may even coexist within a single species. Here, through dense, widespread population-level sampling of the Mojave rattlesnake, Crotalus scutulatus, we show that genomic structural variation at multiple loci underlies extreme geographical variation in venom composition, which is maintained despite extensive gene flow. Unexpectedly, neither diet composition nor neutral population structure explain venom variation. Instead, venom divergence is strongly correlated with environmental conditions. Individual toxin genes correlate with distinct environmental factors, suggesting that different selective pressures can act on individual loci independently of their co-expression patterns or genomic proximity. Our results challenge common assumptions about diet composition as the key selective driver of snake venom evolution and emphasize how the interplay between genomic architecture and local-scale spatial heterogeneity in selective pressures may facilitate the retention of adaptive functional polymorphisms across a continuous space.Funding: Leverhulme Trust Grant RPG 2013-315 to WW, Santander Early Career Research Scholarship to GZ, Ministerio de Economía y Competitividad Grant BFU2013-42833-P to JJC.Peer reviewe
    corecore