336 research outputs found

    Warm and fertile sub-humid conditions enhance litterfall to sustain high soil respiration fluxes in a mediterranean cork oak forest

    Get PDF
    Soil respiration is a major component of the global carbon budget and Mediterranean ecosystems have usually been studied in locations with shallow soils, mild temperatures, and a prolonged dry season. This study investigates seasonal soil respiration rates and underlying mechanisms under wetter, warmer, and more fertile conditions in a Mediterranean cork oak forest of Northern Tunisia (Africa), acknowledged as one of the most productive forests in the Mediterranean basin. We applied a soil respiration model based on soil temperature and relative water content and investigated how ecosystem functioning under these favorable conditions affected soil carbon storage through carbon inputs to the soil litter. Annual soil respiration rates varied between 1774 gC m(-2) year(-1) and 2227 gC m(-2) year(-1), which is on the highest range of observations under Mediterranean climate conditions. We attributed this high soil carbon flux as a response to favorable temperatures and soil water content, but this could be sustained only by a small carbon allocation to roots (root/shoot ratio = 0.31-0.41) leading to a large allocation to leaves with a multiannual leaf production, enhanced annual twig elongation (11.5-28.5 cm) with a reduced leaf life span (<1 year) maintaining a low LAI (1.68-1.88) and generating a high litterfall (386-636 gC m(-2) year(-1)). Thus, the favorable climatic and edaphic conditions experienced by these Mediterranean cork oak forests drove high soil respiration fluxes which balanced the high carbon assimilation leading to a relatively small overall contribution (10.96-14.79 kgC m(-2)) to soil carbon storage

    Modelling the role of fires in the terrestrial carbon balance by incorporating SPITFIRE into the global vegetation model ORCHIDEE - Part 1: Simulating historical global burned area and fire regimes

    Get PDF
    Journal Article© 2014 Author(s). Fire is an important global ecological process that influences the distribution of biomes, with consequences for carbon, water, and energy budgets. Therefore it is impossible to appropriately model the history and future of the terrestrial ecosystems and the climate system without including fire. This study incorporates the process-based prognostic fire module SPITFIRE into the global vegetation model ORCHIDEE, which was then used to simulate burned area over the 20th century. Special attention was paid to the evaluation of other fire regime indicators such as seasonality, fire size and fire length, next to burned area. For 2001-2006, the simulated global spatial extent of fire agrees well with that given by satellite-derived burned area data sets (L3JRC, GLOBCARBON, GFED3.1), and 76-92% of the global burned area is simulated as collocated between the model and observation, depending on which data set is used for comparison. The simulated global mean annual burned area is 346 Mha yrg'1, which falls within the range of 287-384 Mha yrg'1 as given by the three observation data sets; and is close to the 344 Mha yrg'1 by the GFED3.1 data when crop fires are excluded. The simulated long-term trend and variation of burned area agree best with the observation data in regions where fire is mainly driven by climate variation, such as boreal Russia (1930-2009), along with Canada and US Alaska (1950-2009). At the global scale, the simulated decadal fire variation over the 20th century is only in moderate agreement with the historical reconstruction, possibly because of the uncertainties of past estimates, and because land-use change fires and fire suppression are not explicitly included in the model. Over the globe, the size of large fires (the 95th quantile fire size) is underestimated by the model for the regions of high fire frequency, compared with fire patch data as reconstructed from MODIS 500 m burned area data. Two case studies of fire size distribution in Canada and US Alaska, and southern Africa indicate that both number and size of large fires are underestimated, which could be related with short fire patch length and low daily fire size. Future efforts should be directed towards building consistent spatial observation data sets for key parameters of the model in order to constrain the model error at each key step of the fire modelling

    Characterizing global fire regimes from satellite-derived products

    Get PDF
    We identified four global fire regimes based on a k-means algorithm using five variables covering the spatial, temporal and magnitude dimensions of fires, derived from 19-year long satellite burned area and active fire products. Additionally, we assessed the relation of fire regimes to forest fuels distribution. The most extensive fire regime (35% of cells having fire activity) was characterized by a long fire season, medium size fire events, small burned area, high intensity and medium variability. The next most extensive fire regime (25.6%) presented a long fire season, large fire events and the highest mean burned area, yet it showed the lowest intensity and the least variability. The third group (22.07%) presented a short fire season, the lowest burned area, with medium-low intensity, the smallest fire patches and large variability. The fourth group (17.3%) showed the largest burned area with large fire patches of moderate intensity and low variability. Fire regimes and fuel types showed a statistically significant relation (CC = 0.58 and CC? = 0.67, p < 0.001), with most fuel types sustaining all fire regimes, although a clear prevalence was observed in some fuel types. Further efforts should be directed towards the standardization of the variables in order to facilitate comparison, analysis and monitoring of fire regimes and evaluate whether fire regimes are effectively changing and the possible drivers.Agencia Estatal de Investigació

    Plate tectonics drive tropical reef biodiversity dynamics

    Get PDF
    The Cretaceous breakup of Gondwana strongly modified the global distribution of shallow tropical seas reshaping the geographic configuration of marine basins. However, the links between tropical reef availability, plate tectonic processes and marine biodiversity distribution patterns are still unknown. Here, we show that a spatial diversification model constrained by absolute plate motions for the past 140 million years predicts the emergence and movement of diversity hotspots on tropical reefs. The spatial dynamics of tropical reefs explains marine fauna diversification in the Tethyan Ocean during the Cretaceous and early Cenozoic, and identifies an eastward movement of ancestral marine lineages towards the Indo-Australian Archipelago in the Miocene. A mechanistic model based only on habitat-driven diversification and dispersal yields realistic predictions of current biodiversity patterns for both corals and fishes. As in terrestrial systems, we demonstrate that plate tectonics played a major role in driving tropical marine shallow reef biodiversity dynamics

    Uso do índice de vegetação por diferença normalizada (NDVI) na avaliação do desenvolvimento de cafeeiros do Sul de Minas Gerais

    Get PDF
    O objetivo deste trabalho foi de observar o índice de vegetação por diferença normalizada (NDVI) em cafezais de Lavras, sul de Minas Gerais ao longo do tempo para utilização desta variável como ferramenta no manejo das lavouras. Foi realizado o estudo em cafezal no campus da Universidade Federal de Lavras (UFLA) no período de fevereiro de 2014 a março de 2015. Trinta plantas de Coffea arabica L, cv Catuaí IAC 144 com 6 anos de idade foram avaliadas semanalmente o NDVI em três posições e conteúdo de clorofila total em 4 posições. Os dados obtidos foram submetidos à análise de série temporal e cada variável foram submetidos à análise de correlação de Person (r). Os resultados indicam que Nas plantas de café valores de NDVI variaram em função da posição da planta e da época da medida, enquanto para NDVI e conteúdo de clorofila total foi observada uma correlação negativa. Contudo, a série temporal do NDVI é uma ferramenta útil no manejo de cafezais no sul de Minas Gerais

    Modern relationships between microscopic charcoal in marine sediments and fire regimes on adjacent landmasses to refine the interpretation of marine paleofire records: An Iberian case study

    Get PDF
    Marine microcharcoal records provide invaluable information to understand changes in biomass burning and its drivers over multiple glacial and interglacial cycles and to evaluate fire models under warmer climates than today. However, quantitative reconstructions of burnt area, fire intensity and frequency from these records need calibration studies of the current fire-microcharcoal relationship. Here, we present the analysis of microcharcoal concentration and morphology in 102 core-top sediment samples collected in the Iberian margin and the Gulf of Cádiz. We show that microcharcoal concentrations are influenced by the water depth or the distance from the river mouth. At regional scale, the mean microcharcoal concentrations and microcharcoal elongation (length to width ratio) show a marked latitudinal variation in their distribution, primarily controlled by the type of burnt vegetation in the adjacent continent. High microcharcoal concentrations in marine sediments represent rare, large and intense fires in open Mediterranean woodlands. Based on these results, the increasing trend of microcharcoal concentrations recorded since 8 ka in the well-known marine sedimentary core MD95-2042 off the Iberian margin indicates the occurrence of large and infrequent fires of high intensity due to the progressive degradation of the Mediterranean forest and the expansion of shrublands

    Conhecendo o IAF do cafeeiro arábica através do índice de vegetação por diferença normalizada

    Get PDF
    O objetivo deste trabalho foi relacionar a série temporal do Índice de Área Foliar (IAF) estimado pelo método proposto por Barbosa et al. (2012) ao índice de vegetação por diferença normalizada (NDVI) adequando um modelo de determinação do IAF através de dados de NDVI coletados em um cafezal na região de Lavras, sul de Minas Gerais. Para isso foi realizado o estudo em cafezal no campus da Universidade Federal de Lavras (UFLA) no período de fevereiro de 2014 a fevereiro de 2015 onde trinta plantas de Coffea arabica L, cv Catuaí IAC 144 foram avaliadas mensalmente com medições de altura do ramo ortotrópico e comprimento de plagiotrópicos em 5 posições na copa para estimativa do IAF, enquanto as avaliações de NDVI foram realizadas semanalmente em três posições distintas da planta. Dados mensais de precipitação (mm- Prec) e temperatura média do ar (°C- Tm) também foram coletados. Os valores de cada variável foram submetidos à análise de correlação (r). A série temporal demonstra que o IAF varia em função da temperatura e precipitação. O modelo de regressão exponencial foi o mais adequado para determinar os valores de IAF em função do NDVI. As correlações do IAF com o NDVI variam em função da posição da medida de NDVI da planta. A série temporal do IAF é uma variável útil nas práticas de manejo, enquanto NDVI pode ser utilizado para determinar o IAF em plantas de café

    High-resolution data reveal a surge of biomass loss from temperate and Atlantic pine forests, contextualizing the 2022 fire season distinctiveness in France

    Get PDF
    The frequency and intensity of summer droughts and heat waves in Western Europe have been increasing, raising concerns about the emergence of fire hazard in less fire-prone areas. This exposure of old-growth forests hosting unadapted tree species may cause disproportionately large biomass losses compared to those observed in frequently burned Mediterranean ecosystems. Therefore, analyzing fire seasons from the perspective of exposed burned areas alone is insufficient; we must also consider impacts on biomass loss. In this study, we focus on the exceptional 2022 summer fire season in France and use very high-resolution (10 m) satellite data to calculate the burned area, tree height at the national level, and subsequent ecological impact based on biomass loss during fires. Our high-resolution semi-automated detection estimated 42 520 ha of burned area, compared to the 66 393 ha estimated by the European automated remote sensing detection system (EFFIS), including 48 330 ha actually occurring in forests. We show that Mediterranean forests had a lower biomass loss than in previous years, whereas there was a drastic increase in burned area and biomass loss over the Atlantic pine forests and temperate forests. High biomass losses in the Atlantic pine forests were driven by the large burned area (28 600 ha in 2022 vs. 494 ha yr−1 in 2006–2021 period) but mitigated by a low exposed tree biomass mostly located on intensive management areas. Conversely, biomass loss in temperate forests was abnormally high due to both a 15-fold increase in burned area compared to previous years (3300 ha in 2022 vs. 216 ha in the 2006–2021 period) and a high tree biomass of the forests which burned. Overall, the biomass loss (i.e., wood biomass dry weight) was 0.25 Mt in Mediterranean forests and shrublands, 1.74 Mt in the Atlantic pine forest, and 0.57 Mt in temperate forests, amounting to a total loss of 2.553 Mt, equivalent to a 17 % increase of the average natural mortality of all French forests, as reported by the national inventory. A comparison of biomass loss between our estimates and global biomass/burned areas data indicates that higher resolution improves the identification of small fire patches, reduces the commission errors with a more accurate delineation of the perimeter of each fire, and increases the biomass affected. This study paves the way for the development of low-latency, high-accuracy assessment of biomass losses and fire patch contours to deliver a more informative impact-based characterization of each fire year.</p

    Improving understanding of the functional diversity of fisheries by exploring the influence of global catch reconstruction

    Get PDF
    Functional diversity is thought to enhance ecosystem resilience, driving research focused on trends in the functional composition of fisheries, most recently with new reconstructions of global catch data. However, there is currently little understanding of how accounting for unreported catches (e.g. small-scale and illegal fisheries, bycatch and discards) influences functional diversity trends in global fisheries. We explored how diversity estimates varied among reported and unreported components of catch in 2010, and found these components had distinct functional fingerprints. Incorporating unreported catches had little impact on global-scale functional diversity patterns. However, at smaller, management-relevant scales, the effects of incorporating unreported catches were large (changes in functional diversity of up to 46%). Our results suggest there is greater uncertainty about the risks to ecosystem integrity and resilience from current fishing patterns than previously recognized. We provide recommendations and suggest a research agenda to improve future assessments of functional diversity of global fisheries
    corecore