500 research outputs found

    Fate of radium on the discharge of oil and gas produced water to the marine environment

    Get PDF
    Understanding the speciation and fate of radium during operational discharge from the offshore oil and gas industry into the marine environment is important in assessing its long term environmental impact. In the current work, Ra-226 concentrations in marine sediments contaminated by produced water discharge from a site in the UK were analysed using gamma spectroscopy. Radium was present in field samples (0.1-0.3 Bq g(-1)) within International Atomic Energy Agency activity thresholds and was found to be primarily associated with micron sized radiobarite particles (Peer reviewe

    Unravelling the lipoyl‐relay of exogenous lipoate utilization in Bacillus subtilis

    Get PDF
    Lipoate is an essential cofactor for key enzymes of oxidative and one-carbon metabolism. It is covalently attached to E2 subunits of dehydrogenase complexes and GcvH, the H subunit of the glycine cleavage system. Bacillus subtilis possess two protein lipoylation pathways: biosynthesis and scavenging. The former requires octanoylation of GcvH, insertion of sulfur atoms and amidotransfer of the lipoate to E2s, catalyzed by LipL. Lipoate scavenging is mediated by a lipoyl protein ligase (LplJ) that catalyzes a classical two-step ATP-dependent reaction. Although these pathways were thought to be redundant, a ∆lipL mutant, in which the endogenous lipoylation pathway of E2 subunits is blocked, showed growth defects in minimal media even when supplemented with lipoate and despite the presence of a functional LplJ. In this study, we demonstrate that LipL is essential to modify E2 subunits of branched chain ketoacid and pyruvate dehydrogenases during lipoate scavenging. The crucial role of LipL during lipoate utilization relies on the strict substrate specificity of LplJ, determined by charge complementarity between the ligase and the lipoylable subunits. This new lipoyl-relay required for lipoate scavenging highlights the relevance of the amidotransferase as a valid target for the design of new antimicrobial agents among Gram-positive pathogens.Fil: Rasetto, NatalĂ­ BelĂ©n. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Rosario. Instituto de BiologĂ­a Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias BioquĂ­micas y FarmacĂ©uticas. Instituto de BiologĂ­a Molecular y Celular de Rosario; ArgentinaFil: Lavatelli, Antonela. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Rosario. Instituto de BiologĂ­a Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias BioquĂ­micas y FarmacĂ©uticas. Instituto de BiologĂ­a Molecular y Celular de Rosario; ArgentinaFil: Martin, Natalia. Michigan State University; Estados Unidos. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Rosario. Instituto de BiologĂ­a Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias BioquĂ­micas y FarmacĂ©uticas. Instituto de BiologĂ­a Molecular y Celular de Rosario; ArgentinaFil: Mansilla, Maria Cecilia. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Rosario. Instituto de BiologĂ­a Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias BioquĂ­micas y FarmacĂ©uticas. Instituto de BiologĂ­a Molecular y Celular de Rosario; Argentin

    The EU strategy for solving the DEMO exhaust problem

    Get PDF
    Exhaust of power and particles is crucial for the DEMO device and the EU has developed a strategy to address the challenges. This strategy consists of a conventional approach based on extrapolation of the ITER solution (detached lower single null divertor) as well as the development of alternatives as risk mitigation. These comprise alternative magnetic divertor geometry, liquid metal targets and intrinsically ELM-free operational scenarios. On the experimental side, the EUROfusion programme has initiated both upgrades to existing linear and toroidal devices as well as plans to engage in new devices presently under construction in the EU. In parallel, the theory and modelling efforts are ramped up in a targeted effort to obtain the necessary understanding for safe extrapolation to DEMO. This is especially important for the alternatives, which cannot be tested in ITER.</p

    Non-contrast renal magnetic resonance imaging to assess perfusion and corticomedullary differentiation in health and chronic kidney disease

    Get PDF
    AIMS Arterial spin labelling (ASL) MRI measures perfusion without administration of contrast agent. While ASL has been validated in animals and healthy volunteers (HVs), application to chronic kidney disease (CKD) has been limited. We investigated the utility of ASL MRI in patients with CKD. METHODS We studied renal perfusion in 24 HVs and 17 patients with CKD (age 22-77 years, 40% male) using ASL MRI at 3.0T. Kidney function was determined using estimated glomerular filtration rate (eGFR). T1 relaxation time was measured using modified look-locker inversion and xFB02;ow-sensitive alternating inversion recovery true-fast imaging and steady precession was performed to measure cortical and whole kidney perfusion. RESULTS T1 was higher in CKD within cortex and whole kidney, and there was association between T1 time and eGFR. No association was seen between kidney size and volume and either T1, or ASL perfusion. Perfusion was lower in CKD in cortex (136 ± 37 vs. 279 ± 69 ml/min/100 g; p &#60; 0.001) and whole kidney (146 ± 24 vs. 221 ± 38 ml/min/100 g; p &#60; 0.001). There was significant, negative, association between T1 longitudinal relaxation time and ASL perfusion in both the cortex (r = -0.75, p &#60; 0.001) and whole kidney (r = -0.50, p &#60; 0.001). There was correlation between eGFR and both cortical (r = 0.73, p &#60; 0.01) and whole kidney (r = 0.69, p &#60; 0.01) perfusion. CONCLUSIONS Significant differences in renal structure and function were demonstrated using ASL MRI. T1 may be representative of structural changes associated with CKD; however, further investigation is required into the pathological correlates of reduced ASL perfusion and increased T1 time in CKD

    Controls on the fate and speciation of Np(V) during iron (oxyhydr)oxide crystallization

    Get PDF
    The speciation and fate of neptunium as Np(V)O2+ during the crystallization of ferrihydrite to hematite and goethite was explored in a range of systems. Adsorption of NpO2+ to iron(III) (oxyhydr)oxide phases was reversible and, for ferrihydrite, occurred through the formation of mononuclear bidentate surface complexes. By contrast, chemical extractions and X-ray absorption spectroscopy (XAS) analyses showed the incorporation of Np(V) into the structure of hematite during its crystallization from ferrihydrite (pH 10.5). This occurred through direct replacement of octahedrally coordinated Fe(III) by Np(V) in neptunate-like coordination. Subsequent analyses on mixed goethite and hematite crystallization products (pH 9.5 and 11) showed that Np(V) was incorporated during crystallization. Conversely, there was limited evidence for Np(V) incorporation during goethite crystallization at the extreme pH of 13.3. This is likely due to the formation of a Np(V) hydroxide precipitate preventing incorporation into the goethite particles. Overall these data highlight the complex behavior of Np(V) during the crystallization of iron(III) (oxyhydr)oxides, and demonstrate clear evidence for neptunium incorporation into environmentally important mineral phases. This extends our knowledge of the range of geochemical conditions under which there is potential for long-term immobilization of radiotoxic Np in natural and engineered environments

    LplA1-dependent utilization of host lipoyl peptides enables Listeria cytosolic growth and virulence

    Full text link
    The bacterial pathogen Listeria monocytogenes replicates within the cytosol of mammalian cells. Mechanisms by which the bacterium exploits the host cytosolic environment for essential nutrients are poorly defined. L. monocytogenes is a lipoate auxotroph and must scavenge this critical cofactor, using lipoate ligases to facilitate attachment of the lipoyl moiety to metabolic enzyme complexes. Although the L. monocytogenes genome encodes two putative lipoate ligases, LplA1 and LplA2, intracellular replication and virulence require only LplA1. Here we show that LplA1 enables utilization of host-derived lipoyl peptides by L. monocytogenes . LplA1 is dispensable for growth in the presence of free lipoate, but necessary for growth on low concentrations of mammalian lipoyl peptides. Furthermore, we demonstrate that the intracellular growth defect of the ή lplA1 mutant is rescued by addition of exogenous lipoic acid to host cells, suggesting that L. monocytogenes dependence on LplA1 is dictated by limiting concentrations of available host lipoyl substrates. Thus, the ability of L. monocytogenes and other intracellular pathogens to efficiently use host lipoyl peptides as a source of lipoate may be a requisite adaptation for life within the mammalian cell.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72528/1/MMI+5956+Supp.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/72528/2/j.1365-2958.2007.05956.x.pd

    Uranium fate during crystallization of magnetite from ferrihydrite in conditions relevant to the disposal of radioactive waste

    Get PDF
    Uranium incorporation into magnetite and its behaviour during subsequent oxidation has been investigated at high pH to determine the uranium retention mechanism(s) on formation and oxidative perturbation of magnetite in systems relevant to radioactive waste disposal. Ferrihydrite was exposed to U(VI)aq containing cement leachates (pH 10.5-13.1) and crystallization of magnetite was induced via addition of Fe(II)aq. A combination of XRD, chemical extraction and XAS techniques provided direct evidence that U(VI) was reduced and incorporated into the magnetite structure, possibly as U(V), with a significant fraction recalcitrant to oxidative remobilization. Immobilization of U(VI) by reduction and incorporation into magnetite at high pH, and with significant stability upon reoxidation, has clear and important implications for limiting uranium migration in geological disposal of radioactive wastes. © 2016 by Walter de Gruyter Berlin/Boston

    Strontium sorption and precipitation behaviour during bioreduction in nitrate impacted sediments

    Get PDF
    AbstractThe behaviour of strontium (Sr2+) during microbial reduction in nitrate impacted sediments was investigated in sediment microcosm experiments relevant to nuclear sites. Although Sr2+ is not expected to be influenced directly by redox state, bioreduction of nitrate caused reduced Sr2+ solubility due to an increase in pH during bioreduction and denitrification. Sr2+ removal was greatest in systems with the highest initial nitrate loading and consequently more alkaline conditions at the end of denitrification. After denitrification, a limited re-release of Sr2+ back into solution occurred coincident with the onset of metal (Mn(IV) and Fe(III)) reduction which caused minor pH changes in all microcosms with the exception of the bicarbonate buffered system with initial nitrate of 100mM and final pH>9. In this system ~95% of Sr2+ remained associated with the sediment throughout the progression of bioreduction. Analysis of this pH 9 system using X-ray absorption spectroscopy (XAS) and electron microscopy coupled to thermodynamic modelling showed that Sr2+ became partially incorporated within carbonate phases which were formed at higher pH. This is in contrast to all other systems where final pH was <9, here XAS analysis showed that outer sphere Sr2+ sorption predominated. These results provide novel insight into the likely environmental fate of the significant radioactive contaminant, 90Sr, during changes in sediment biogeochemistry induced by bioreduction in nitrate impacted nuclear contaminated environments

    Incorporation and retention of 99-Tc(IV) in magnetite under high pH conditions

    Get PDF
    Technetium incorporation into magnetite and its behavior during subsequent oxidation has been investigated at high pH to determine the technetium retention mechanism(s) on formation and oxidative perturbation of magnetite in systems relevant to radioactive waste disposal. Ferrihydrite was exposed to Tc(VII)(aq) containing cement leachates (pH 10.5-13.1), and crystallization of magnetite was induced via addition of Fe(II)aq. A combination of X-ray diffraction (XRD), chemical extraction, and X-ray absorption spectroscopy (XAS) techniques provided direct evidence that Tc(VII) was reduced and incorporated into the magnetite structure. Subsequent air oxidation of the magnetite particles for up to 152 days resulted in only limited remobilization of the incorporated Tc(IV). Analysis of both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) data indicated that the Tc(IV) was predominantly incorporated into the magnetite octahedral site in all systems studied. On reoxidation in air, the incorporated Tc(IV) was recalcitrant to oxidative dissolution with less than 40% remobilization to solution despite significant oxidation of the magnetite to maghemite/goethite: All solid associated Tc remained as Tc(IV). The results of this study provide the first direct evidence for significant Tc(IV) incorporation into the magnetite structure and confirm that magnetite incorporated Tc(IV) is recalcitrant to oxidative dissolution. Immobilization of Tc(VII) by reduction and incorporation into magnetite at high pH and with significant stability upon reoxidation has clear and important implications for limiting technetium migration under conditions where magnetite is formed including in geological disposal of radioactive wastes

    Retention of immobile Se(0) in flow-through aquifer column systems during bioreduction and oxic-remobilization

    Get PDF
    Selenium (Se) is a toxic contaminant with multiple anthropogenic sources, including Se-79 from nuclear fission. Se mobility in the geosphere is generally governed by its oxidation state, therefore understanding Se speciation under variable redox conditions is important for the safe management of Se contaminated sites. Here, we investigate Se behavior in sediment groundwater column systems. Experiments were conducted with environmentally relevant Se concentrations, using a range of groundwater compositions, and the impact of electron-donor (i.e., biostimulation) and groundwater sulfate addition was examined over a period of 170 days. X-Ray Absorption Spectroscopy and standard geochemical techniques were used to track changes in sediment associated Se concentration and speciation. Electron-donor amended systems with and without added sulfate retained up to 90% of added Se(VI)(aq), with sediment associated Se speciation dominated by trigonal Se(0) and possibly trace Se(-II); no Se colloid formation was observed. The remobilization potential of the sediment associated Se species was then tested in reoxidation and seawater intrusion perturbation experiments. In all treatments, sediment associated Se (i.e., trigonal Se(0)) was largely resistant to remobilization over the timescale of the experiments (170 days). However, in the perturbation experiments, less Se was remobilized from sulfidic sediments, suggesting that previous sulfate-reducing conditions may buffer Se against remobilization and migration.Peer reviewe
    • 

    corecore