
 
 
 
 

Gillis, K. A., Mccomb, C., Patel, R. K., Stevens, K. K., Schneider, M. P., 

Radjenovic, A., Morris, S. T.W., Roditi, G. H., Delles, C. and Mark, P. B. 

(2016) Non-contrast renal magnetic resonance imaging to assess perfusion 

and corticomedullary differentiation in health and chronic kidney disease. 

Nephron, 133(3), pp. 183-192. (doi:10.1159/000447601) 

 

This is the author’s final accepted version. 
 

There may be differences between this version and the published version. 

You are advised to consult the publisher’s version if you wish to cite from 

it. 

 

 

 
 

http://eprints.gla.ac.uk/121076/ 
     

 
 
 
 
 

 
Deposited on: 19 July 2016 

 
 
 
 
 
 
 
 
 
 
 
 
 

Enlighten – Research publications by members of the University of Glasgow 

http://eprints.gla.ac.uk 

http://dx.doi.org/10.1159/000447601
http://eprints.gla.ac.uk/121076/
http://eprints.gla.ac.uk/121076/
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/


1 
 

 
 

Non contrast renal magnetic resonance imaging to assess 

perfusion and corticomedullary differentiation in health and chronic 

kidney disease 

Keith A Gillis MBChB1*, Christie McComb PhD1, Rajan K Patel MBChB PhD1, 

Kathryn K Stevens MBChB PhD1, Markus P Schneider MD2, Aleksandra Radjenovic 

PhD1, Scott TW Morris MBChB PhD3, Giles H Roditi MBChB4, Christian Delles MD1, 

Patrick B Mark MBChB PhD1 

1. Institute of Cardiovascular and Medical Sciences, University of Glasgow 

2. Departments of Nephrology and Hypertension, University of Erlangen-

Nuremberg 

3. Glasgow Renal and Transplant Unit, Queen Elizabeth University Hospital, 

Glasgow 

4. Department of Radiology, Glasgow Royal Infirmary, Glasgow 

*corresponding author 

Email:  keithgillis@nhs.net 

Telephone:  0141 330 8218 

Fax:   0141 330 6972 

Address: Institute of Cardiovascular and Medical Sciences  

British Heart Foundation Glasgow Cardiovascular Research Centre 

126 University Place, Glasgow G12 8TA 

Running title: Non contrast renal MRI in health and disease 

 

mailto:keithgillis@nhs.net


2 
 

 
 

Abstract 

Aims 

Arterial spin labeling magnetic resonance imaging (ASL MRI) measures perfusion without 

administration of contrast agent. Whilst ASL has been validated in animals and healthy 

volunteers, application to chronic kidney disease (CKD) has been limited. We investigated 

the utility of ASL MRI in patients with CKD. 

Methods 

We studied renal perfusion in 24 healthy volunteers (HV) and 17 patients with CKD (age 22–

77 years, 40% male) using ASL MRI at 3.0T. Kidney function was determined using 

estimated glomerular filtration rate (eGFR). T1 relaxation time was measured using MOLLI  

and FAIR True FISP was performed to measure cortical and whole kidney perfusion.  

Results 

T1 was higher in CKD within cortex and whole kidney, and there was association between 

T1 time and eGFR. No association was seen between kidney size and volume and either T1, 

or ASL perfusion. Perfusion was lower in CKD in cortex (136±37 vs 279±69ml/min/100g; 

p<0.001) and whole kidney (146±24 vs. 221±38ml/min/100g; p < 0.001). There was 

significant, negative, association between T1 longitudinal relaxation time and ASL perfusion 

in both the cortex (r = -0.75, p < 0.001) and whole kidney (r = -0.50, p < 0.001). There was 

correlation between eGFR and both cortical (0.73, p <0.01) and whole kidney (r = 0.69, 

p<0.01) perfusion.  

Conclusions 

Significant differences in renal structure and function were demonstrated using ASL MRI. T1 

may be representative of structural changes associated with CKD, however further 
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investigation is required into the pathological correlates of reduced ASL perfusion and 

increased T1 time in CKD. 
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Introduction 

Renal perfusion is an important physiological parameter in health and disease. In normal 

physiology, renal blood flow is an important determinant of oxygen supply and glomerular 

filtration rate [1] whilst in chronic kidney disease (CKD), renal microvascular dysfunction is 

one of a number of common pathological mechanisms involved in the progression of disease, 

irrespective of the initiating insult.  

Despite this crucial role of perfusion in renal physiology and disease, in vivo measurement 

remains a challenge in both clinical and research settings, as established methods are 

associated with a number of inherent drawbacks. Measurement of the clearance of para-

aminohippuric acid (PAH) is time consuming and invasive [2], whilst computed tomography 

(CT) and nuclear medicine techniques carry a radiation burden, with the former requiring 

administration of nephrotoxic iodinated contrast. Dynamic contrast enhanced (DCE) 

magnetic resonance (MR) techniques can be used to measure renal perfusion but the 

administration of gadolinium-based agents is now relatively contraindicated in patients with 

renal impairment, due to an association with nephrogenic systemic fibrosis [3].  

Arterial spin labeling (ASL) magnetic resonance imaging (MRI) is an imaging technique 

allowing non-invasive measurement of renal perfusion using magnetically labelled blood as a 

contrast agent. Protons in blood are labelled by application of a saturation, or inversion, 

radiofrequency pulse, which then alter tissue magnetization upon exchange with blood within 

capillary beds. An unlabelled image is also acquired, and the ASL signal is determined by 

subtraction of the two. ASL MRI has an inherently low signal-to-noise ratio, due to the low 

contribution of inflowing blood to total tissue magnetisation. Nevertheless, ASL MRI has 

been validated in animals against a microsphere technique [4], and in an explanted kidney 

model [5], with close correlation observed between methods. In humans, good reproducibility 
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has been confirmed in healthy volunteer studies [6]. For example, in a recent study a 

coefficient of variance of 9.2% and 7.1% for cortical perfusion and whole kidney perfusion 

was demonstrated [7]. A small number of studies have shown reduced perfusion in patients 

with CKD compared to controls [8,9], and in poorly functioning kidney transplants compared 

to transplants with better function [10-12].  

Nevertheless, ASL MRI has not yet entered widespread clinical use, hampered by lack of 

standardization in sequence acquisition protocols, and post processing methods. The utility of 

ASL MRI as a marker for disease severity and progression in CKD, and as a measure of 

response to therapy, is yet to be determined. We therefore investigated the use of ASL MRI 

for the assessment of patients with CKD.  
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Materials and Methods 

Patients with CKD were recruited from the general nephrology clinic at the Glasgow Renal 

and Transplant Unit, whilst healthy volunteers (HV) were recruited via local advertisement. 

Subjects attended on a single occasion, undergoing clinical and biochemical assessment, and 

subsequent MRI. All subjects gave written informed consent and the local ethics committee 

approved the study. The study is registered with a clinical trials database (ISRCTN 

12301736) and was carried out in compliance with the Declaration of Helsinki.  

Biochemical measurements 

Baseline serum biochemistry and haematology measurements and urinary protein and 

creatinine quantification were obtained. Estimated glomerular filtration rate (eGFR) was 

calculated from the measured serum creatinine using the Chronic Kidney Disease 

Epidemiology Collaboration (CKD–EPI) formula [13]. Proteinuria was measured using a 

spot protein to creatinine ratio (PCR) from a random urine sample. 

Magnetic resonance imaging 

MRI was performed on a Siemens Magnetom Verio 3.0 Tesla scanner (Siemens Erlangen, 

Germany), using a 6-channel phased array body coil. A half Fourier acquisition single shot 

turbo spin echo (HASTE) localizer sequence was used to identify the location of the kidneys 

and vessels, using the following parameters: TR = 1400 ms, TE = 93 ms, voxel size = 2.1 x 

1.5 x 5 mm3, refocusing pulse flip angle = 160o, number of slices = 30, turbo factor = 179, 

bandwidth = 781 Hz/pixel. ASL was performed using a flow-sensitive alternating inversion 

recovery (FAIR) perfusion preparation with true fast imaging and steady precession (True-

FISP) acquisition. A single sagittal double oblique slice of both kidneys was obtained, 

positioned at the mid-point of each axis, moved posteriorly to avoid major vessels. Three 

images with alternating selective and non-selective inversions were obtained in a single 
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acquisition during a 12 second breath-hold, and this was repeated five times.  In addition, an 

image with no ASL preparation was acquired to measure equilibrium magnetization.  Fair 

True-FISP parameters were: inversion time 900 ms, repetition time 3.65 ms, echo time 1.83 

ms, flip angle 60o, field of view 380 x 380 mm, in plane resolution 2.0 x 1.5 mm2, matrix size 

256 x 192, and slice thickness 10 mm. T1 was acquired during a separate breath-hold by a 

modified Look-Locker inversion recovery (MOLLI) sequence, with the following 

parameters: TR = 740 ms, TE = 1.1 ms, voxel size = 2.0 x 1.5 x 6 mm3, flip angle = 35o, 

starting inversion time (TI) = 125 ms, TI increment = 80 ms, number of inversions = 3, 

bandwidth = 930 Hz/pixel. T1 was computed pixel wise using a non-linear curve fitting 

algorithm, using the three parameter signal model [14]. Total scan time was approximately 15 

minutes.  

Image analysis 

Renal anatomy was assessed on localizer images using a commercially available multi-

modality post processing workstation (Siemens Syngo, Siemens, Erlangen, Germany). 

Kidney length was measured on coronal images and volume was measured using a voxel 

count method by tracing contours on each slice of a 22 slice transverse oriented image 

volume. T1 time was measured in cortex, medulla, and whole kidney, and corticomedullary 

differentiation (CMD) was calculated as the ratio of cortex to medulla T1 time. Post 

processing was performed using in house software (MATLAB 8.4 R2014b; MathWorks, 

Natick, Massachusetts, U.S.A). An averaged ASL subtraction image was produced from 

registered subtraction images derived from each breath-hold.  This was fitted to the M0 and 

T1 data using the standard ASL kinetic model [15] to produce a perfusion map. Image co-

registration of ASL, M0 and T1 maps was performed using an enhanced correlation 

coefficient maximization algorithm with affine transformations [16]. Pixel wise computation 

of perfusion was performed according to the following formula, where f = perfusion, ʎ = 
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tissue-blood partition coefficient (0.8 mL/g in kidney), M0 = equilibrium magnetisation, ΔM 

= ASL signal, T1 longitudinal relaxation time, TI = inversion time: 

 

Regions of interest (ROIs) were drawn onto the perfusion map to measure cortical and whole 

kidney perfusion. Total single kidney perfusion, was calculated by multiplying the renal 

perfusion normalised per gram of renal tissue, by the renal mass, assuming that the mass of 

1g per 1cm3 of renal tissue. For each individual the total kidney perfusion, analogous to renal 

blood flow was calculated by combining the kidney blood flow of the left and right kidneys. 

A single operator performed image analysis.  

Statistical analysis 

Results are expressed as mean ± standard deviation. T1 time and perfusion were measured in 

cortical and whole kidney ROIs, and ASL measurements are expressed by unit of mass 

(100g) which is typical in the standard kinetic model. Between group differences in T1 time, 

CMD, and perfusion were evaluated using independent samples Student’s t tests. Evaluation 

of correlation between MRI measurements and serum and urine biochemistry parameters was 

performed using Pearson’s correlation coefficient. Throughout, p values < 0.05 were deemed 

significant. Data were analysed using IBM SPSS Statistics version 22.0 (IBM, Armonk, New 

York, U.S.A). 
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Results 

Baseline data 

24 HV and 17 patients with CKD were recruited; the demographic data for each group is 

displayed in table 1. The CKD group was significantly older (p < 0.05), and had higher blood 

pressure (p < 0.05). CKD-EPI eGFR was 39.8 ± 25.2 ml/min/1.73m2 in the CKD group and 

99.6 ± 14.0 ml/min/1.73m2 in the HV group (p < 0.001). 

Renal anatomy 

Renal anatomical data is shown in table 2. Kidney length was significantly shorter in the 

CKD group compared with the HV group (p < 0.05) however renal volume was no different 

between the two. The CKD group had significantly higher T1 longitudinal relaxation time 

both measured in the cortex (p < 0.001) and the whole kidney (p < 0.01) ROI (figure 1). 

Furthermore, CMD was significantly higher in CKD than in HV (p < 0.001). 

Renal perfusion 

Renal perfusion was significantly lower in the CKD group (table 2 and figure 1). In the CKD 

cohort, mean cortical perfusion was 136 ± 37 ml/min/100g in comparison to 279 ± 69 

ml/min/100g in the HV cohort (p < 0.001). Similarly, whole kidney perfusion was reduced in 

the CKD group, at 146 ± 24 ml/min/100g compared to 221 ± 38 ml/min/100g (p < 0.001). 

Furthermore, total renal perfusion was 446 ± 150 ml/min in CKD compared to 731 ± 158 

ml/min in HV (p < 0.001). Typical perfusion maps from both groups are shown in figure 2.  

Intra-observer variability 

Intra-observer variation of cortical perfusion measurements was 7.3% with intra-class 

correlation (ICC) of 0.98, whilst variation of whole kidney perfusion measurements was 

found to be 4.4% with ICC of 0.96. 
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Association between renal anatomical and functional parameters 

There was significant, negative, association between T1 longitudinal relaxation time and ASL 

perfusion measured in both the cortex (r = -0.75, p < 0.001) and whole kidney (r = -0.50, p < 

0.001). No significant association was seen between kidney length or volume and either ASL 

perfusion measurements, or T1 longitudinal relaxation time.   

Correlation of clinical, biochemical and MRI parameters 

Both cortical and whole kidney perfusion were found to have a negative association with age 

(respectively, r = -0.48, p < 0.01; r = -0.51, p < 0.01). Whilst there was no association 

between blood pressure and cortical perfusion, a negative correlation was observed between 

whole kidney perfusion and mean arterial blood pressure (r = -0.33, p < 0.05). 

Correlation was seen between eGFR and both whole kidney T1 longitudinal relaxation time 

(r = -0.40, p < 0.05) and cortical T1 time (r = -0.58, p < 0.001). Furthermore, significant 

correlation was seen between eGFR and both cortical perfusion (r = 0.73, p < 0.01) and 

whole kidney perfusion (r = 0.69, p < 0.01). There was also significant correlation between 

total renal perfusion and eGFR (r = 0.69, p < 0.01). PCR was negatively correlated with both 

cortical (r = -0.60, p < 0.01) and whole kidney perfusion (r = -0.43, p < 0.05) (figure 3).  



11 
 

 
 

Discussion 

CKD has a tendency to worsen despite treatment of blood pressure and any other reversible 

or aetiological factors, and there is evidence that common pathological mechanisms are 

responsible for this irrespective of the original renal insult. Renal damage has been shown to 

correlate primarily with tubulointerstitial injury [17], characterised by a vicious cycle of 

microvasculature dysfunction leading to tubular atrophy and fibrosis [18]. In vivo biomarkers 

to assess renal progression are lacking and emerging techniques such as ASL MRI may 

provide much needed insight into renal perfusion and thus extent of renal damage.  

We found that cortical perfusion is reduced from 279 ml/min/100g in HV to 136 ml/min/100g 

in patients with CKD, with correlation between perfusion and degree of renal impairment 

quantified by eGFR. Whole kidney perfusion is similarly reduced, from 221 ml/min/100g to 

146 ml/min/100g. This is in keeping with previous measurements of renal perfusion in health 

and disease, and the finding of reduced native kidney perfusion in CKD has also previously 

been demonstrated [9,12]. Whilst our perfusion values are lower than found in other studies, 

this CKD cohort represents the largest to undergo ASL MRI and included patients with more 

advanced renal impairment than previously studied. Our findings demonstrate strong 

correlation of renal function to perfusion across a broad range of CKD-EPI eGFR, ranging 

from 20 to 126 ml/min/1.73m2.  

Earlier human studies using ASL MRI are summarised in table 3, which demonstrates the 

range of perfusion values previously demonstrated. The broad range could be ascribed to 

differences in ASL sequence, imaging strategy, and post processing as well as true 

differences in study population. For example, different strategies have been employed to 

circumvent the problem of renal respiratory motion, including breath-holding, respiratory 

gating, or post processing registration. Gardener & Francis [19] found no difference in 
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perfusion measurements made with either breath-holding or free breathing, but found reduced 

perfusion when background suppression was used to improve image quality, showing that 

some variations in imaging approach cause differences in perfusion measurements. Our ASL 

technique resulted in a scan time of 15 minutes, and breath-holding time of 12 seconds, 

which was tolerated by all participants.  

ASL has been validated in animal models using microsphere techniques and using explanted 

organs undergoing haemoperfusion. In normal renal function, strong correlation between 

ASL and both DCE MRI perfusion [20], and PAH clearance [21] has been shown. Validation 

of ASL against a gold standard perfusion technique has not, to our knowledge, been 

undertaken in a CKD population. Given that quantitative measurement of perfusion using the 

standard ASL kinetic model is dependent on T1 time, it is possible that structural changes in 

CKD are at least partly responsible for the functional changes measured by ASL MRI. In 

keeping with previous studies [22], we have shown that T1 time is significantly higher in 

CKD, and that T1 time shows strong correlation with CKD-EPI eGFR. Lee et al [23] 

previously showed that cortical T1, but not medullary T1 time showed strong correlation with 

single kidney GFR measured by renography. These differences may be accounted for by 

changes in extracellular composition, fibrosis, or in the microvasculature, and further 

investigation is required into the association between the pathological changes in CKD, T1 

time, and ASL perfusion. Notably, there was stronger association between eGFR and whole 

kidney ASL perfusion (r = 0.69, p < 0.01) than T1 time (r = 0.40, p < 0.05) suggesting that 

ASL does grant some additional information into renal physiology in CKD, in addition to the 

structural changes identified by differences in T1 time. Additionally, there was no association 

between ASL and kidney size or volume, suggesting that the difference in perfusion in CKD 

is not entirely attributable to tissue atrophy.  
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ASL MRI is but one of a number of emerging MRI techniques which may have utility in 

CKD, such as blood oxygen level dependent (BOLD) imaging, and diffusion weighted (DWI) 

and diffusion tensor imaging (DTI). Future research should be guided at identifying the 

imaging correlates of renal fibrosis in CKD, as this may allow identification of biomarkers 

which can prognosticate, guide therapy, and act as surrogate markers of renal progression in 

studies of novel therapeutics in CKD.  

Our study has a number of limitations. Our CKD cohort has a variety of renal pathologies and 

whilst common pathological mechanisms underpin all chronic kidney disorders it is possible 

that perfusion abnormalities may predominate in certain aetiologies of CKD over others. 

Despite attempts to match the two groups, mean age was higher in the CKD than HV cohort, 

and therefore the changes in ASL MRI may not be independent of aging. Despite being one 

of the largest ASL studies in CKD, even larger studies are required to confirm our findings 

and exclude the possibility of group effects confounding some of the associations with the 

biochemical parameters which were measured. Furthermore, we have used the standard ASL 

kinetic model which is primarily validated in healthy volunteers and assumes constant arterial 

transit time and blood tissue exchange. Differences in these factors may artefactually alter 

perfusion measurements in CKD, and as previously discussed further research is necessary to 

validate the use of ASL in the CKD population. Lastly, our study was carried out using 3.0T 

MRI, which is in general less available in clinical use and further work will be required to 

translate our findings to 1.5T platform, as it is more commonly used in clinical practice.  

In conclusion, we have shown significant differences in renal perfusion measured with ASL 

MRI in a group of patients with advanced CKD, and shown correlation to renal parameters 

such as eGFR.  
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Legends to Figures 

Figure 1 

Box and whisker plot of T1 longitudinal relaxation time and perfusion in healthy volunteers 

and CKD. 

Figure 2 

ASL MRI perfusion maps from a healthy volunteer (A) and patient with chronic kidney 

disease stage 3/4 (B) with an eGFR of 30 ml/min/1.73m2. Both whole kidney (1 & 2) and 

cortical (3 & 4) perfusion are demonstrated. Cortical thinning, reduced corticomedullary 

differentiation, and reduced global perfusion can be seen in CKD. 

Figure 3 

Association between biochemical measurements and ASL. Correlation was observed between 

eGFR and cortical perfusion (r = 0.73, p < 0.01) (A), and eGFR and whole kidney perfusion 

(r = 0.69, p < 0.01) (B).  
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Tables 

 

Table 1. Baseline parameters. Baseline clinical and biochemical parameters are shown of 
healthy volunteers and patients with chronic kidney disease. Results are shown as mean ± 
standard deviation.  

Parameter Healthy 
volunteers 

Chronic kidney 
disease 

p value 

Number 24 17  

Age (years) 47 ± 14 56 ± 10 < 0.05 

Body mass index (kg/m2) 26.5 ± 5.3 29.3 ± 3.4 0.06 

Blood pressure (mmHg) 132/83 ± 15/8 151/90 ± 26/14 < 0.05 

Mean arterial blood pressure 
(mmHg) 

99 ± 9 110 ± 17 < 0.05 

CKD-EPI eGFR (ml/min/1.73m2) 99.6 ± 14.0 39.9 ± 25.2 < 0.001 

Serum creatinine (µmol/L) 68 ± 10 184 ± 69 <0.001 

Primary renal diagnosis (number)    

 Diabetes  2  

 Glomerulonephritis  8  

 Renovascular disease  4  

 Other   2  

 CKD-cause unknown  1  

CKD stage (number)    

1 
2 
3 
4 
5 

 2 
1 
4 

10 
0 
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Table 2. MRI parameters. Measurements of renal anatomy, T1 longitudinal relaxation 
time, and ASL MRI perfusion are shown in healthy volunteers and chronic kidney disease. 
Results are shown as mean ± standard deviation.  

Parameter Healthy 
volunteers 

Chronic kidney 
disease 

p value 

Kidney length (cm) 10.5 ± 0.8 9.7 ± 0.9 < 0.05 

Kidney volume (cm3) 167.1 ± 35.0 160.1 ± 53.4 0.62 

Cortical T1 time (ms) 1366 ± 122 1529 ± 77 < 0.001 

Whole kidney T1 time (ms) 1472 ± 91 1550 ± 81 < 0.01 

Corticomedullary differentiation 0.84 ± 0.07 0.94 ± 0.07 < 0.001 

Mean cortical perfusion 
(ml/min/100g) 

279 ± 69 136 ± 37 < 0.001 

Mean whole kidney perfusion 
(ml/min/100g) 

221 ± 38 146 ± 24 < 0.001 

Mean kidney perfusion (ml/min) 366 ± 79 223 ± 75 < 0.001 

Total renal perfusion (ml/min) 731 ± 159 446 ± 150 < 0.001 
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Table 3. Human studies in arterial spin labeling, grouped by cohort (kidney disease, hypertension, and healthy volunteers). Perfusion 
measurements are displayed as mean ± standard deviation unless otherwise stated. TI = inversion time, FAIR = flow sensitive inversion 
recovery, GRASE = gradient and spin echo, FISP = fast imaging with steady state precession, SSFSE = single shot fast spin echo, SSFP = single 
shot free precession, spin-echo echo planar imaging, BS = background suppression, HASTE = half Fourier acquisition single shot turbo spin 
echo, UFLARE =  ultra-fast low angle rare, T = Tesla, HF = heart failure, HV = healthy volunteer, HTN = hypertensive, CKD = chronic kidney 
disease, RAS = renal artery stenosis, eGFR = estimated glomerular filtration rate. 

Author Journal Year ASL 
 

Field 
strength 

Population & number Perfusion (ml/min/100g) 
Whole kidney Cortex Medulla 

Breidthardt 

et al [24] 

Eur. Radiol. 2015 FAIR 1.5T HF eGFR < 60 ml/min/100g (n=10) 

HF eGFR > 60 ml/min/100g (n=10) 

Age matched HV (n=10) 

HV < 40 years (n=10) 

 

 146 ± 50 

171 ± 31 

274 ± 65 

278 ± 59 

 

Heusch et al 

[11] 

J. Magn. 

Reson. Im. 

2013 FAIR True FISP  

 

 

 

 

1.5T & 3T Kidney transplant 

eGFR > 30 

eGFR < 30 

 

282.7 ± 60.8 

178.2 ±63.3 

  

Rossi et al 

[9] 

 

 

 

Invest. 

Radiol. 

2012 FAIR True FISP 3T HV (n=8) 

CKD (mean eGFR 69 ± 12 ml/min 

by inulin clearance) (n=9) 

 

301 ±  51 

 

244 ± 77 

329 ± 52 

 

263 ± 81 

 

Artz  et al 

[12] 

Magn. 

Reson. 

Imaging. 

2011 FAIR b-SSFP 1.5T HV (n=5) 

CKD (n=5) 

Kidney transplant with  

eGFR > 60 ml/min/1.73m2 (n=5) 

Kidney transplant with eGFR < 60 

ml/min/1.73m2 (n=10) 

 

 

 

 

 

 

 

 

 

 

427 ± 20 

225 ± 85 

314 ± 41 

 

235 ± 91 

85 ± 33 

60 ± 23 

37 ± 21 

 

36 ± 14 
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Lanzman et 

al [10]  

Eur. Radiol. 2010 FAIR True FISP 1.5T  Kidney transplant with stable 

function (n=6) 

Recent kidney transplant (n=7) 

Acute transplant dysfunction (n=7) 

 

 

 

 

 

 

 

304.8 ± 34.4 

 

296.5 ± 44.1 

181.9 ± 53.4 

 

Fenchel et 

al [25] 

Radiology 2006 FAIR True FISP  1.5T Patients with RAS (n=12) 

 

 

 

 

HTN but no RAS (n=6) 

 

 

Asymmetry of perfusion values 

Significant differences between perfusion 

in kidney with high grade compared to no 

or low grade RAS 

 

243 ± 59 

 

 

 

 

 

323 ± 79 

 

 

 

 

 

113 ± 22 

 

Michaely et 

al [8] 

Invest. 

Radiol. 

2004 FAIR HASTE 1.5T CKD (renovascular or other 

aetiology) (n=46) 

Not quantified but reduced ASL signal on 

semi- quantitative analysis  

 

  

Ott et al [26] CJASN 2013 FAIR True FISP 1.5T HTN, before and after renal 

denervation (n=19) 

 

 

256.8 (IQR 241 – 278)   

Schneider et 

al [27] 

CJASN 2012 FAIR True FISP 1.5T HTN, before and after 4 weeks of 

oral  aliskiren therapy (n=34) 

 

 

272 ±25   

Ritt et al[21] NDT 2010 FAIR True FISP 1.5T Males with metabolic syndrome 

before and after 2 weeks of oral 

telmisartan therapy (n=24) 

 

253 ±20   

 

Cutajar et al 

 

Eur. Radiol. 

 

2014 

 

Multi TI FAIR 3D 

 

1.5 T 

 

HV (n=16) 

 

 

 

263± 41 
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[20] GRASE 

 

 

 

Gillis et al [7] BMC 

Nephrol. 

2014 FAIR True FISP 

 

 

3 T HV (n=12) 229 ± 41 327 ± 63  

Park et al 

[28] 

Magn. 

Reson. 

Imaging. 

 

2013 Pseudocontinuo

us ASL 

3T HV (n=1)  320 

 

 

Wang et al 

[29] 

Acad. 

Radiol. 

2012 FAIR SSFSE 3T HV, before and after intravenous 

furosemide (n=11) 

 

 366.6 ± 41.2 

 

 

 

118.59 

 

 

Cutajar et al 

[6]  

MAGMA 2012 Multi TI FAIR 3D 

GRASE 

1.5T HV (n=20) 147 ± 30.8 178 ± 40.7  

 

 

 

Gardener 

AG & 

Francis ST 

[19] 

Magn. 

Reson. 

Imaging. 

2010 FAIR True FISP 

 

SE-EPI with & 

without BS 

1.5T HV (n=9) 

FAIR TRUE FISP 

SE-EPI with BS 

SE EPI without BS 

 

 

 

 

 

 

 

367 ± 50 

284 ± 75 

334 ± 65 

 

103 ± 27 

139 ± 55 

122 ± 48 

Kiefer et al 

[30] 

Acad. 

Radiol. 

 

2009 FAIR TrueFISP 3T HV (n=11)  245 ± 11 109 ± 5 

Karger et al 

[31] 

Magn. 

Reson. 

Imaging. 

2000 FAIR UFLARE 1.5T HV (n=10) 213 ± 55   
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Figure 1 
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Figure 2 
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Figure 3 
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