6,673 research outputs found

    Tree Level Unitarity Bounds for the Minimal B-L Model

    Full text link
    We have derived the unitarity bounds in the high energy limit for the minimal B-L extension of the Standard Model by analysing the full class of Higgs and would-be Goldstone boson two-to-two scatterings at tree level. Moreover, we have investigated how these limits could vary at some lower critical value of the energy.Comment: 20 pages, 4 figures, 2 tables; 1d figure modified, typos corrected, bibliography augmented; published in PRD after minor adjustmen

    The Z' boson of the minimal B-L model at future Linear Colliders in e+e- --> mu+mu-

    Get PDF
    We study the capabilities of future electron-positron Linear Colliders, with centre-of-mass energy at the TeV scale, in accessing the parameter space of a ZZ' boson within the minimal BLB-L model. We carry out a detailed comparison between the discovery regions mapped over a two-dimensional configuration space (ZZ' mass and coupling) at the Large Hadron Collider and possible future Linear Colliders for the case of di-muon production. As known in the literature for other ZZ' models, we confirm that leptonic machines, as compared to the CERN hadronic accelerator, display an additional potential in discovering a ZZ' boson as well as in allowing one to study its properties at a level of precision well beyond that of any of the existing colliders.Comment: 5 pages, proceeding of LC09 (Perugia), published by the Italian Physical Society in the Nuovo Cimento C (Colloquia

    Designable buried waveguides in sapphire by proton implantation

    Get PDF
    Buried and stacked planar as well as buried single and parallel channel waveguides are fabricated in sapphire by proton implantation. Good control of the implantation parameters provides excellent confinement of the guided light in each structure. Low propagation losses are obtained in fundamental-mode, buried channel waveguides without postimplantation annealing. Choice of the implantation parameters allows one to design mode shapes with different ellipticity and/or mode asymmetry in each orthogonal direction, thus demonstrating the versatility of the fabrication method. Horizontal and vertical parallelization is demonstrated for the design of one- or two-dimensional waveguide arrays in hard crystalline materials

    Análise de perigos e pontos críticos de controle (APPCC) manual específico para a produção integrada de tomate industrial.

    Get PDF
    bitstream/CNPH-2010/36484/1/ct-74.pd

    Processamento mínimo de alface crespa.

    Get PDF
    bitstream/CNPH-2009/33244/1/cot_25.pd

    Pushing the limits, episode 2: K2 observations of extragalactic RR Lyrae stars in the dwarf galaxy Leo IV

    Get PDF
    We present the first observations of extragalactic pulsating stars in the K2 ecliptic survey of the Kepler space telescope. Variability of all three RR Lyrae stars in the dwarf spheroidal galaxy Leo IV were successfully detected, at a brightness of Kp~21.5 mag, from data collected during Campaign 1. We identified one modulated star and another likely Blazhko candidate with periods of 29.8+-0.9 d and more than 80 d, respectively. EPIC 210282473 represents the first star beyond the Magellanic Clouds for which the Blazhko period and cycle-to-cycle variations in the modulation were unambiguously measured.The photometric [Fe/H] indices of the stars agree with earlier results that Leo IV is a very metal-poor galaxy. Two out of three stars blend with brighter background galaxies in the K2 frames. We demonstrate that image subtraction can be reliably used to extract photometry from faint confused sources that will be crucial not only for the K2 mission but for future space photometric missions as well.Comment: 8 pages, 6 figures, accepted for publication in the Astrophysical Journal. Light curves can be downloaded from http://konkoly.hu/KIK/data.htm

    Sapphire planar waveguides fabricated by H+ ion beam implantation

    Get PDF
    1.1-MeV proton-implanted sapphire waveguides are investigated for the first time. Optical measurements show that the planar waveguides support low-order transverse-mode propagation with good guiding properties without the need to anneal the samples

    Proton implanted sapphire planar and channel waveguides

    Get PDF
    We report low-order transverse-mode planar waveguides in sapphire fabricated for the first time by proton implantation. The waveguides show good guiding properties without post-implantation annealing. Channel waveguiding was achieved by polyimide strip-loading

    Bell inequality violation by entangled single photon states generated from a laser, a LED or a Halogen lamp

    Get PDF
    In single-particle or intraparticle entanglement, two degrees of freedom of a single particle, e.g., momentum and polarization of a single photon, are entangled. Single-particle entanglement (SPE) provides a source of non classical correlations which can be exploited both in quantum communication protocols and in experimental tests of noncontextuality based on the Kochen-Specker theorem. Furthermore, SPE is robust under decoherence phenomena. Here, we show that single-particle entangled states of single photons can be produced from attenuated sources of light, even classical ones. To experimentally certify the entanglement, we perform a Bell test, observing a violation of the Clauser, Horne, Shimony and Holt (CHSH) inequality. On the one hand, we show that this entanglement can be achieved even in a classical light beam, provided that first-order coherence is maintained between the degrees of freedom involved in the entanglement. On the other hand, we prove that filtered and attenuated light sources provide a flux of independent SPE photons that, from a statistical point of view, are indistinguishable from those generated by a single photon source. This has important consequences, since it demonstrates that cheap, compact, and low power entangled photon sources can be used for a range of quantum technology applications

    XQCAT: eXtra Quark Combined Analysis Tool

    Get PDF
    XQCAT (eXtra Quark Combined Analysis Tool) is a tool aimed at determining exclusion confidence levels for scenarios of new physics characterised by the presence of one or multiple heavy extra quarks which interact through Yukawa couplings with any of the Standard Model quarks. The code uses a database of efficiencies for pre-simulated processes of QCD-induced pair production of extra quarks and their subsequent on-shell decays. In the version 1.2 of XQCAT the efficiencies have been computed for a set of seven publicly available search results by the CMS experiment. The input for the code is a text file in which masses, branching ratios and dominant chirality of the couplings of the new quarks are provided. The output of the code is the exclusion confidence levels of the test point for each implemented experimental analysis considered individually and, when possible, in statistical combination.Comment: 18 pages, 2 figures, version accepted for publication in Comp. Phys. Comm., fixed formatting problems caused by the arXiv's autotex syste
    corecore