8,889 research outputs found
The role of automaticity and attention in neural processes underlying empathy for happiness, sadness, and anxiety.
Although many studies have examined the neural basis of empathy, relatively little is known about how empathic processes are affected by different attentional conditions. Thus, we examined whether instructions to empathize might amplify responses in empathy-related regions and whether cognitive load would diminish the involvement of these regions. Thirty-two participants completed a functional magnetic resonance imaging session assessing empathic responses to individuals experiencing happy, sad, and anxious events. Stimuli were presented under three conditions: watching naturally, actively empathizing, and under cognitive load. Across analyses, we found evidence for a core set of neural regions that support empathic processes (dorsomedial prefrontal cortex, DMPFC; medial prefrontal cortex, MPFC; temporoparietal junction, TPJ; amygdala; ventral anterior insula, AI; and septal area, SA). Two key regions-the ventral AI and SA-were consistently active across all attentional conditions, suggesting that they are automatically engaged during empathy. In addition, watching vs. empathizing with targets was not markedly different and instead led to similar subjective and neural responses to others' emotional experiences. In contrast, cognitive load reduced the subjective experience of empathy and diminished neural responses in several regions related to empathy and social cognition (DMPFC, MPFC, TPJ, and amygdala). The results reveal how attention impacts empathic processes and provides insight into how empathy may unfold in everyday interactions
Encapsulation process sterilizes and preserves surgical instruments
Ethylene oxide is blended with an organic polymer to form a sterile material for encapsulating surgical instruments. The material does not bond to metal and can be easily removed when the instruments are needed
Process for preparing sterile solid propellants Patent
Using ethylene oxide in preparation of sterilized solid rocket propellants and encapsulating material
Practical approach to diastolic dysfunction in light of the new guidelines and clinical applications in the operating room and in the intensive care
There is growing evidence both in the perioperative period and in the field of intensive care (ICU) on the association between left ventricular diastolic dysfunction (LVDD) and worse outcomes in patients. The recent American Society of Echocardiography and European Association of Cardiovascular Imaging joint recommendations have tried to simplify the diagnosis and the grading of LVDD. However, both an often unknown pre-morbid LV diastolic function and the presence of several confounders—i.e., use of vasopressors, positive pressure ventilation, volume loading—make the proposed parameters difficult to interpret, especially in the ICU. Among the proposed parameters for diagnosis and grading of LVDD, the two tissue Doppler imaging-derived variables e′ and E/e′ seem most reliable. However, these are not devoid of limitations. In the present review, we aim at rationalizing the applicability of the recent recommendations to the perioperative and ICU areas, discussing the clinical meaning and echocardiographic findings of different grades of LVDD, describing the impact of LVDD on patients’ outcomes and providing some hints on the management of patients with LVDD
Direct and long-lasting effects elicited by repeated drug administration on 50-kHz ultrasonic vocalizations are regulated differently: Implications for the study of the affective properties of drugs of abuse
Several studies suggest that 50-kHz ultrasonic vocalizations (USVs) may indicate a positive affective state in rats, and these vocalizations are increasingly being used to investigate the properties of psychoactive drugs. Previous studies, however, have focused on dopaminergic psychostimulants and morphine, whereas little is known about how other drugs modulate 50-kHz USVs. To further elucidate the neuropharmacology of 50-kHz USVs, the present study characterized the direct and long-lasting effects of different drugs of abuse, by measuring the number of 50-kHz USVs and their 'trill' subtype emitted by adult male rats. Rats received repeated administrations of amphetamine (2 mg/kg, i.p.), 3,4-methylenedioxymethamphetamine (MDMA, 7.5 mg/kg, i.p.), morphine (7.5 mg/kg, s.c.), or nicotine (0.4 mg/kg, s.c.), on either consecutive or alternate days (five administrations in total) in a novel environment. Seven days later, rats were re-exposed to the drug-paired environment, subjected to USVs recording, and then challenged with the same drug. Finally, 7 d after the challenge, rats were repeatedly exposed to the drug-paired environment and vocalizations were measured. Amphetamine was the only drug to stimulate 50-kHz USVs and 'trill' subtype emission during administration and challenge. Conversely, all rats emitted 50-kHz USVs when re-exposed to the test cage, and this effect was most marked in morphine-treated rats, and less evident in nicotine-treated rats. This study demonstrates that the direct and long-lasting effects of drugs on 50-kHz USVs are regulated differently, providing a better understanding of the usefulness of these vocalizations in the study of psychoactive drugs
Extracorporeal CO2 removal in hypercapnic patients who fail noni nvasive ventialtion and refuse endotracheal intubation. a case series
Noninvasive ventilation (NIV) represents the standard of care for patients with exacerbation of chronic obstructive pulmonary disease. However, NIV fails in almost 40% of the most severe forms of acute hypercapnic respiratory failure and patients must undergo endotracheal intubation and invasive ventilation. Such transition from NIV to invasive ventilation is associated to increased mortality. Under these circumstances, patients may express a clear intention not to be intubated
Random Access in Massive MIMO by Exploiting Timing Offsets and Excess Antennas
Massive MIMO systems, where base stations are equipped with hundreds of
antennas, are an attractive way to handle the rapid growth of data traffic. As
the number of user equipments (UEs) increases, the initial access and handover
in contemporary networks will be flooded by user collisions. In this paper, a
random access protocol is proposed that resolves collisions and performs timing
estimation by simply utilizing the large number of antennas envisioned in
Massive MIMO networks. UEs entering the network perform spreading in both time
and frequency domains, and their timing offsets are estimated at the base
station in closed-form using a subspace decomposition approach. This
information is used to compute channel estimates that are subsequently employed
by the base station to communicate with the detected UEs. The favorable
propagation conditions of Massive MIMO suppress interference among UEs whereas
the inherent timing misalignments improve the detection capabilities of the
protocol. Numerical results are used to validate the performance of the
proposed procedure in cellular networks under uncorrelated and correlated
fading channels. With UEs that may simultaneously become active
with probability 1\% and a total of frequency-time codes (in a given
random access block), it turns out that, with antennas, the proposed
procedure successfully detects a given UE with probability 75\% while providing
reliable timing estimates.Comment: 30 pages, 6 figures, 1 table, submitted to Transactions on
Communication
The non-coding RNA landscape of plasma cell dyscrasias
Despite substantial advancements have been done in the understanding of the pathogenesis of plasma cell (PC) disorders, these malignancies remain hard-to-treat. The discovery and subsequent characterization of non-coding transcripts, which include several members with diverse length and mode of action, has unraveled novel mechanisms of gene expression regulation often malfunctioning in cancer. Increasing evidence indicates that such non-coding molecules also feature in the pathobiology of PC dyscrasias, where they are endowed with strong therapeutic and/or prognostic potential. In this review, we aim to summarize the most relevant findings on the biological and clinical features of the non-coding RNA landscape of malignant PCs, with major focus on multiple myeloma. The most relevant classes of non-coding RNAs will be examined, along with the mechanisms accounting for their dysregulation and the recent strategies used for their targeting in PC dyscrasias. It is hoped these insights may lead to clinical applications of non-coding RNA molecules as biomarkers or therapeutic targets/agents in the near future
Random Access in Uplink Massive MIMO Systems: How to exploit asynchronicity and excess antennas
Massive MIMO systems, where the base stations are equipped with hundreds of
antennas, are an attractive way to handle the rapid growth of data traffic. As
the number of users increases, the initial access and handover in contemporary
networks will be flooded by user collisions. In this work, we propose a random
access procedure that resolves collisions and also performs timing, channel,
and power estimation by simply utilizing the large number of antennas
envisioned in massive MIMO systems and the inherent timing misalignments of
uplink signals during network access and handover. Numerical results are used
to validate the performance of the proposed solution under different settings.
It turns out that the proposed solution can detect all collisions with a
probability higher than 90%, at the same time providing reliable timing and
channel estimates. Moreover, numerical results demonstrate that it is robust to
overloaded situations.Comment: submitted to IEEE Globecom 2016, Washington, DC US
Poly(hydroxyalkanoate) production by Cupriavidus necator from fatty waste can be enhanced by phaZ1 inactivation
PHA production from waste oils or fats requires microorganisms that should be both excellent PHA producers and equipped with enzymatic activities allowing hydrolysation of triglycerides. Unfortunately, microbes with the combination of substrate-utilization and PHA production are not currently available, and the strategies to be adopted are the use of costly commercial enzymes, or genetic modification of microorganisms exhibiting high PHA product yields. In the present work, after a general investigation on the ability of Cupriavidus necator to grow on a number of fatty substrates, the possibility to enhance PHA production by limiting intracellular depolymerisation, was investigated. By knocking out the related phaZ1 gene, the construction of C. necator recombinant strains impaired in depolymerase (PhaZ1) activity was achieved. The polymer yield of the recombinant strain was finally compared to that of the parental C. necator DSM 545
- …