301 research outputs found

    Sphingolipids are involved in insect egg-induced cell death in Arabidopsis.

    Get PDF
    In Brassicaceae, hypersensitive-like programmed cell death (HR-like) is a central component of direct defenses triggered against eggs of the large white butterfly (Pieris brassicae). The signaling pathway leading to HR-like in Arabidopsis (Arabidopsis thaliana) is mainly dependent on salicylic acid (SA) accumulation, but downstream components are unclear. Here, we found that treatment with P. brassicae egg extract (EE) triggered changes in expression of sphingolipid metabolism genes in Arabidopsis and black mustard (Brassica nigra). Disruption of ceramide (Cer) synthase activity led to a significant decrease of EE-induced HR-like whereas SA signaling and reactive oxygen species levels were unchanged, suggesting that Cer are downstream activators of HR-like. Sphingolipid quantifications showed that Cer with C16:0 side chains accumulated in both plant species and this response was largely unchanged in the SA-induction deficient2 (sid2-1) mutant. Finally, we provide genetic evidence that the modification of fatty acyl chains of sphingolipids modulates HR-like. Altogether, these results show that sphingolipids play a key and specific role during insect egg-triggered HR-like

    Identification and characterization of the Non-race specific Disease Resistance 1 (NDR1) orthologous protein in coffee

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Leaf rust, which is caused by the fungus <it>Hemileia vastatrix </it>(Pucciniales), is a devastating disease that affects coffee plants (<it>Coffea arabica </it>L.). Disadvantages that are associated with currently developed phytoprotection approaches have recently led to the search for alternative strategies. These include genetic manipulations that constitutively activate disease resistance signaling pathways. However, molecular actors of such pathways still remain unknown in <it>C. arabica</it>. In this study, we have isolated and characterized the coffee <it>NDR1 </it>gene, whose <it>Arabidopsis </it>ortholog is a well-known master regulator of the hypersensitive response that is dependent on coiled-coil type R-proteins.</p> <p>Results</p> <p>Two highly homologous cDNAs coding for putative NDR1 proteins were identified and cloned from leaves of coffee plants. One of the candidate coding sequences was then expressed in the <it>Arabidopsis </it>knock-out null mutant <it>ndr1-1</it>. Upon a challenge with a specific strain of the bacterium <it>Pseudomonas syringae </it>(DC3000::<it>AvrRpt2</it>), analysis of both macroscopic symptoms and <it>in planta </it>microbial growth showed that the coffee cDNA was able to restore the resistance phenotype in the mutant genetic background. Thus, the cDNA was dubbed <it>CaNDR1a </it>(standing for <it>Coffea arabica Non-race specific Disease Resistance 1a</it>). Finally, biochemical and microscopy data were obtained that strongly suggest the mechanistic conservation of the <it>NDR1</it>-driven function within coffee and <it>Arabidopsis </it>plants. Using a transient expression system, it was indeed shown that the CaNDR1a protein, like its <it>Arabidopsis </it>counterpart, is localized to the plasma membrane, where it is possibly tethered by means of a GPI anchor.</p> <p>Conclusions</p> <p>Our data provide molecular and genetic evidence for the identification of a novel functional <it>NDR1 </it>homolog in plants. As a key regulator initiating hypersensitive signalling pathways, <it>CaNDR1 </it>gene(s) might be target(s) of choice for manipulating the coffee innate immune system and achieving broad spectrum resistance to pathogens. Given the potential conservation of <it>NDR1</it>-dependent defense mechanisms between <it>Arabidopsis </it>and coffee plants, our work also suggests new ways to isolate the as-yet-unidentified <it>R</it>-gene(s) responsible for resistance to <it>H. vastatrix</it>.</p

    Biosynthesis and functions of very-long-chain fatty acids in the responses of plants to abiotic and biotic stresses

    Get PDF
    Very-long-chain fatty acids (i.e., fatty acids with more than 18 carbon atoms; VLCFA) are important molecules that play crucial physiological and structural roles in plants. VLCFA are specifically present in several membrane lipids and essential for membrane homeostasis. Their specific accumulation in the sphingolipids of the plasma membrane outer leaflet is of primordial importance for its correct functioning in intercellular communication. VLCFA are found in phospholipids, notably in phosphatidylserine and phosphatidylethanolamine, where they could play a role in membrane domain organization and interleaflet coupling. In epidermal cells, VLCFA are precursors of the cuticular waxes of the plant cuticle, which are of primary importance for many interactions of the plant with its surrounding environment. VLCFA are also major components of the root suberin barrier, which has been shown to be fundamental for nutrient homeostasis and plant adaptation to adverse conditions. Finally, some plants store VLCFA in the triacylglycerols of their seeds so that they later play a pivotal role in seed germination. In this review, taking advantage of the many studies conducted using Arabidopsis thaliana as a model, we present our current knowledge on the biosynthesis and regulation of VLCFA in plants, and on the various functions that VLCFA and their derivatives play in the interactions of plants with their abiotic and biotic environment

    REM1.3's phospho-status defines its plasma membrane nanodomain organization and activity in restricting PVX cell-to-cell movement

    Get PDF
    Plants respond to pathogens through dynamic regulation of plasma membrane-bound signaling pathways. To date, how the plant plasma membrane is involved in responses to viruses is mostly unknown. Here, we show that plant cells sense the Potato virus X (PVX) COAT PROTEIN and TRIPLE GENE BLOCK 1 proteins and subsequently trigger the activation of a membrane-bound calcium-dependent kinase. We show that the Arabidopsis thaliana CALCIUM-DEPENDENT PROTEIN KINASE 3-interacts with group 1 REMORINs in vivo, phosphorylates the intrinsically disordered N-terminal domain of the Group 1 REMORIN REM1.3, and restricts PVX cell-to-cell movement. REM1.3’s phospho-status defines its plasma membrane nanodomain organization and is crucial for REM1.3-dependent restriction of PVX cell-to-cell movement by regulation of callose deposition at plasmodesmata. This study unveils plasma membrane nanodomain-associated molecular events underlying the plant immune response to viruses

    A global LC-MS2 -based methodology to identify and quantify anionic phospholipids in plant samples

    Full text link
    peer reviewedAnionic phospholipids (PS, PA, PI, PIPs) are low-abundant phospholipids with impactful functions in cell signaling, membrane trafficking and cell differentiation processes. They can be quickly metabolized and can transiently accumulate at defined spots within the cell or an organ to respond to physiological or environmental stimuli. As even a small change in their composition profile will produce a significant effect on biological processes, it is crucial to develop a sensitive and optimized analytical method to accurately detect and quantify them. While thin-layer chromatography (TLC) separation coupled with gas chromatography (GC) detection methods already exist, they do not allow for precise, sensitive, and accurate quantification of all anionic phospholipid species. Here we developed a method based on high-performance liquid chromatography (HPLC) combined with two-dimensional mass spectrometry (MS 2) by MRM mode to detect and quantify all molecular species and classes of anionic phospholipids in one shot. This method is based on a derivatization step by methylation that greatly enhances the ionization, the separation of each peak, the peak resolution as well as the limit of detection and quantification for each individual molecular species, and more particularly for PA and PS. Our method universally works in various plant samples. Remarkably, we identified that PS is enriched with very long chain fatty acids in the roots but not in aerial organs of Arabidopsis thaliana. Our work thus paves the way for new studies on how the composition of anionic lipids is finely tuned during plant development and environmental responses

    Clustering of the K<sup>+</sup> channel GORK of Arabidopsis parallels its gating by extracellular K<sup>+</sup>

    Get PDF
    GORK is the only outward-rectifying Kv-like K&lt;sup&gt;+&lt;/sup&gt; channel expressed in guard cells. Its activity is tightly regulated to facilitate K&lt;sup&gt;+&lt;/sup&gt; efflux for stomatal closure and is elevated in ABA in parallel with suppression of the activity of the inward-rectifying K&lt;sup&gt;+&lt;/sup&gt; channel KAT1. Whereas the population of KAT1 is subject to regulated traffic to and from the plasma membrane, nothing is known about GORK, its distribution and traffic in vivo. We have used transformations with fluorescently-tagged GORK to explore its characteristics in tobacco epidermis and Arabidopsis guard cells. These studies showed that GORK assembles in puncta that reversibly dissociated as a function of the external K&lt;sup&gt;+&lt;/sup&gt; concentration. Puncta dissociation parallelled the gating dependence of GORK, the speed of response consistent with the rapidity of channel gating response to changes in the external ionic conditions. Dissociation was also suppressed by the K&lt;sup&gt;+&lt;/sup&gt; channel blocker Ba&lt;sup&gt;2+&lt;/sup&gt;. By contrast, confocal and protein biochemical analysis failed to uncover substantial exo- and endocytotic traffic of the channel. Gating of GORK is displaced to more positive voltages with external K&lt;sup&gt;+&lt;/sup&gt;, a characteristic that ensures the channel facilitates only K&lt;sup&gt;+&lt;/sup&gt; efflux regardless of the external cation concentration. GORK conductance is also enhanced by external K&lt;sup&gt;+&lt;/sup&gt; above 1 mM. We suggest that GORK clustering in puncta is related to its gating and conductance, and reflects associated conformational changes and (de)stabilisation of the channel protein, possibly as a platform for transmission and coordination of channel gating in response to external K&lt;sup&gt;+&lt;/sup&gt;

    Identification and characterization of the Non- race specific Disease Resistance 1 (NDR1) orthologous protein in coffee

    Get PDF
    Abstract Background: Leaf rust, which is caused by the fungus Hemileia vastatrix (Pucciniales), is a devastating disease that affects coffee plants (Coffea arabica L.). Disadvantages that are associated with currently developed phytoprotection approaches have recently led to the search for alternative strategies. These include genetic manipulations that constitutively activate disease resistance signaling pathways. However, molecular actors of such pathways still remain unknown in C. arabica. In this study, we have isolated and characterized the coffee NDR1 gene, whose Arabidopsis ortholog is a well-known master regulator of the hypersensitive response that is dependent on coiledcoil type R-proteins

    Mechanosensing and Sphingolipid-Docking Mediate Lipopeptide-Induced Immunity in Arabidopsis

    Get PDF
    Bacteria-derived lipopeptides are immunogenic triggers of host defenses in metazoans and plants. Root-associated rhizobacteria produce cyclic lipopeptides that activate systemically induced resistance (IR) against microbial infection in various plants. How these molecules are perceived by plant cells remains elusive. Here, we reveal that immunity activation inArabidopsis thalianaby the lipopeptide elicitor surfactin is mediated by docking into specific sphingolipid-enriched domains and relies on host membrane deformation and subsequent activation of mechanosensitive ion channels. This mechanism leads to host defense potentiation and resistance to the necrotrophB. cinereabut is distinct from host pattern recognition receptor-mediated immune activation and reminiscent of damage-induced plant immunity
    corecore