12,096 research outputs found

    Inhomogeneous soliton ratchets under two ac forces

    Get PDF
    We extend our previous work on soliton ratchet devices [L. Morales-Molina et al., Eur. Phys. J. B 37, 79 (2004)] to consider the joint effect of two ac forces including non-harmonic drivings, as proposed for particle ratchets by Savele'v et al. [Europhys. Lett. 67}, 179 (2004); Phys. Rev. E {\bf 70} 066109 (2004)]. Current reversals due to the interplay between the phases, frequencies and amplitudes of the harmonics are obtained. An analysis of the effect of the damping coefficient on the dynamics is presented. We show that solitons give rise to non-trivial differences in the phenomenology reported for particle systems that arise from their extended character. A comparison with soliton ratchets in homogeneous systems with biharmonic forces is also presented. This ratchet device may be an ideal candidate for Josephson junction ratchets with intrinsic large damping

    Diffusion in infinite and semi-infinite lattices with long-range coupling

    Full text link
    We prove that for a one-dimensional infinite lattice, with long-range coupling among sites, the diffusion of an initial delta-like pulse in the bulk, is ballistic at all times. We obtain a closed-form expression for the mean square displacement (MSD) as a function of time, and show some cases including finite range coupling, exponentially decreasing coupling and power-law decreasing coupling. For the case of an initial excitation at the edge of the lattice, we find an approximate expression for the MSD that predicts ballistic behavior at long times, in agreement with numerical results.Comment: 4 pages, 5 figures, submitted for publicatio

    Nonlinear Control of a Thermoacoustic System with Multiple Heat Sources and Actuators

    Get PDF
    Thermoacoustic instabilities can occur in thermal devices when unsteady heat release is coupled with pressure perturbations. This effect results in excitation of Eigen-acoustic modes of the system. These instabilities can lead to unpredictable behavior of the system. Gas-turbine combustion systems are especially prone to this phenomenon reducing their overall efficiency. Additionally, due to the nature of the combustion, the turbines end up releasing undesired amounts of harmful chemicals to the atmosphere, such as Nitrous Oxide (NOX). A Rijke tube, representing a resonator with a mean flow and a concentrated heat source, is a convenient system to study the thermoacoustic phenomena. Under certain conditions of the main system, a loud sound is generated through a process similar to that in devices prone to thermoacoustic instabilities. Rijke devices have been extensively studied and several models which can provide accurate representation of the system, already exists. These models often assume that the system is comprised of a single heat source which drives the instability. This may not be the case as combustors which can use more than one flame are common for engines and industrial burners. By using the aforementioned models, a nonlinear feedback control scheme is developed for a Rijke-type combustor system with n actuators and m heat sources. The performance of the controller is tested under different scenarios, assuring that is capable to exponentially stabilize the system despite any nonlinearities present in the heat release. Additionally, active control is studied in detail by analyzing the impact of the control parameters under different positioning of heat sources. The effect of the location for the actuators is also studied

    Bulk and surface magnetoinductive breathers in binary metamaterials

    Full text link
    We study theoretically the existence of bulk and surface discrete breathers in a one-dimensional magnetic metamaterial comprised of a periodic binary array of split-ring resonators. The two types of resonators differ in the size of their slits and this leads to different resonant frequencies. In the framework of the rotating-wave approximation (RWA) we construct several types of breather excitations for both the energy-conserved and the dissipative-driven systems by continuation of trivial breather solutions from the anticontinuous limit to finite couplings. Numerically-exact computations that integrate the full model equations confirm the quality of the RWA results. Moreover, it is demonstrated that discrete breathers can spontaneously appear in the dissipative-driven system as a results of a fundamental instability.Comment: 10 pages, 16 figure

    Resonant ratcheting of a Bose-Einstein condensate

    Full text link
    We study the rectification process of interacting quantum particles in a periodic potential exposed to the action of an external ac driving. The breaking of spatio-temporal symmetries leads to directed motion already in the absence of interactions. A hallmark of quantum ratcheting is the appearance of resonant enhancement of the current (Europhys. Lett. 79 (2007) 10007 and Phys. Rev. A 75 (2007) 063424). Here we study the fate of these resonances within a Gross-Pitaevskii equation which describes a mean field interaction between many particles. We find, that the resonance is i) not destroyed by interactions, ii) shifting its location with increasing interaction strength. We trace the Floquet states of the linear equations into the nonlinear domain, and show that the resonance gives rise to an instability and thus to the appearance of new nonlinear Floquet states, whose transport properties differ strongly as compared to the case of noninteracting particles

    Thermodynamic analysis of Kerr-Newman black holes

    Get PDF
    In this paper we calculate the Hawking temperature of a black hole described by the Kerr-Newman metric, starting from the surface gravity, the area of the event horizon and the angular velocity of the black hole. To do this we apply the laws of black hole thermodynamics: we first set the energy conservation through a relationship between the mass M, the charge Q and the angular momentum J, then we implement the Hawking's theorem of areas by setting an upper bound to the energy and we get finally the surface gravity of the black hole. In addition, we study the relationship between the black hole parameters (mass M, angular momentum J, electric charge Q) and the Hawking temperature
    corecore